首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于数据挖掘的网络数据库入侵检测系统   总被引:19,自引:0,他引:19  
提出一种基于数据挖掘的网络数据库入侵检测模型 (NDBIDS) ·讨论了NDBIDS的结构及各部件的功能·利用关联规则Apriori算法 ,对用户正常历史数据进行挖掘 ,并对产生的规则进行归并更新 ,通过训练学习生成异常检测模型 ,并利用此模型实现基于数据挖掘的异常检测·NDBIDS可以检测伪装攻击、合法用户的攻击和攻击企图三种类型的攻击 ,通过实验给出了相应攻击的检测率、假报警率、漏报率和检测正确率·本系统的建立不依赖于经验 ,具有较强的灵活性  相似文献   

2.
提出了基于分布式聚类的异常入侵检测方法ID-DC,通过对训练集进行分布式聚类产生聚簇模型,采用基于双参考点的标识算法Double-Reference标记异常簇,不需要具有类别标签的训练集且可自动确定聚簇模型的个数.实验中采用了网络入侵检测数据集KDD-CUP-99来训练模型.实验结果表明:通过采用分布式聚类算法建立的分布式入侵检测模型可有效地检测攻击,检测率高,误警率低.  相似文献   

3.
由于数据库系统结构的复杂性,数据库入侵检测比主机和网络入侵检测更复杂,有更多难题需要去解决.该文提出了数据库日志的三种抽象表示法,利用SQL查询结构稳定性,使用序列模式挖掘算法提取角色的序列模式进行数据库入侵检测.同时,考虑到具体数据库系统的应用语义,该文利用数据库系统的聚类函数进行统计相关属性的改变而进行异常检测,两种方法结合起来既考虑了数据库查询结构的稳定性、通用性,又考虑了数据库系统的应用语义,试验结果证明,该综合方法和单一采用这两种方法相比,有较高的准确率,同时有较低的误报率、漏报率.  相似文献   

4.
黄凯锋 《科技信息》2011,(35):150-151
针对原始入侵检测系统误报率高的缺点,在原始系统中添加了聚类检测部分,提出了一种基于聚类分析的入侵检测系统结构模型.实验表明该新系统有效降低了误报率,能准确的检测出异常数据。  相似文献   

5.
由于采用传统的分类器进行检测时,存在检测率低而误报率高的问题.提出了一种基于免疫聚类的自适应分类器方法,采用多信息粒度的思想有效地克服了聚类算法与分类算法间的不一致性.通过在真实网络数据集上对多种入侵行为的检测结果表明:该分类器的检测率高、漏报率和误报率低,较RBF分类器和BP分类器具有更好的分类性能和推广性能.  相似文献   

6.
阐述了入侵检测和数据挖掘技术,并介绍了数据挖掘技术在入侵检测系统中的应用。  相似文献   

7.
林辉 《科技信息》2012,(23):89-89
本文设计一种入侵检测系统模型,然后将聚类算法k均值聚类算法应用于IDS,针对IDS的被检测数据的特点,研究了如何通过数据预处理技术使k均值聚类算法在IDS数据源上得到更好的挖掘效率。  相似文献   

8.
黄莉 《科技信息》2009,(30):83-84
根据入侵检测中协议分析技术与聚类数据挖掘技术各自不同的检测点,提出了一种新的入侵检测方法,将协议分析技术融合到聚类数据挖掘中。KDDCUP99数据集的仿真试验结果表明了算法的可行性、有效性和扩展性,并有效地提高了聚类检测的检测率,降低了误报率。  相似文献   

9.
针对目前基于K-Means算法的入侵检测技术所存在的符号类型数据处理能力欠缺、误报率较高的问题,提出了一种基于聚类和关联规则修正的入侵检测技术。将关联规则挖掘技术引入到聚类分析机制中,利用针对符号型属性的关联规则挖掘结果对聚类结果进行修正,从而有效降低由于在入侵检测单纯使用聚类分析所导致的误报。详细阐述了改进的具体实现方案,并通过实验验证了该技术的可行性。  相似文献   

10.
在入侵检测CIDF体系结构基础上,提出了基于网络的二层式多数据包分析入侵检测模型.这一模型中,事件分析器对当前事件分两层进行处理:先将当前事件结合历史事件进行关联分类,找出与当前事件关联紧密的历史事件;然后对包含当前事件的这一类关联事件进行回归分析,最终发现潜在的协同攻击和分布式入侵行为.仿真试验说明该算法模型能够检测出传统入侵检测系统难以发现的分布式入侵行为.  相似文献   

11.
彭静  陈波  吴坚 《应用科技》2003,30(2):32-33,31
简要介绍了建立弱点数据库的重要价值,并讨论了建立面向入侵检测弱产点数据库的原则和方法。  相似文献   

12.
自适应入侵检测系统   总被引:4,自引:0,他引:4  
论述入侵检测系统的基本概念,分析入侵检测系统(IDS)的关键技术及存在的问题.为了解决传统入侵检测模型所存在的问题,提出了一个自适应入侵检测系统(AIDS)模型,阐述了系统模型的结构及主要功能.运用自适应的模型生成方法,使收集数据、建立模型并将模型分配给检测器的过程高效、自动化.该模型为开放的系统模型,具有很好的可伸缩性,可大大减少使用IDS的代价,解决IDS的环境适应性问题,降低建立模型的代价,提高系统的效率.  相似文献   

13.
文章简单介绍了传统的入侵检测系统,鉴于现有的网络入侵检测系统(NIDS)存在的误报率高和智能性低等缺点,提出了基于数据挖掘的网络入侵检测系统模型。该模型可以有效检测大规模协同攻击,提高网络入侵检测系统的自适应性和可扩展性。  相似文献   

14.
提出了一种基于网络入侵检测的方案,即从结构上构造一个匹配集,优化入侵检测特征的存储结构,提高入侵检测的效率;并且改善了匹配检测算法,使系统具有学习性;加强了对数据的分析,提高了系统的准确性。  相似文献   

15.
入侵检测是保护信息系统安全的重要途径,作为一种新的动态安全防御技术,它是继防火墙之后的第二道安全防线.入侵检测的关键是采用何种检测方法来有效地提取特征数据并准确分析出非正常网络行为.利用小波变换自适应的时频局部化分析方法,可以由粗及精的逐步观察信号,从中发现网络流量的一些隐藏的细节.通过对实际流量的分析,表明小波技术可以有效的揭示出周围环境和异常流量的细节特征,检测出异常.  相似文献   

16.
提出利用序列模式挖掘方法得到频繁入侵命令序列,将频繁入侵命令转换为底层入侵检测器的检测规则用于检测用户的可疑行为.为了消除误报,设计了一个基于入侵事件状态的关联引擎,将频繁入侵命令序列作办关联规则,并提出了一种新的入侵关联算法,该算法不仅考虑了每类主机入侵行为的序列特征,也反映了不同类型主机入侵行为之间的因果关系,体现了主机入侵行为的多样性和复杂性.实验结果表明,该入侵关联模型对各类主机入侵行为的检测效果良好,误报率明显降低,特别是下载类和信息获取类主机入侵行为的误报降低了20%左右。  相似文献   

17.
深度防卫的自适应入侵检测系统   总被引:1,自引:1,他引:1  
为了全面检测黑客入侵和有效提高检测精度,提出了一种深度防卫的自适应入侵检测系统模型.该模型按照黑客入侵对系统影响的一般顺序,使用不同方法对网络行为、用户行为和系统行为3个层次涉及到的网络数据包、键盘输入、命令序列、审计日志、文件系统和系统调用进行异常检测,并利用信息融合技术来融合不同检测器的检测结果,从而得到合理的入侵判定.在此基础上,提出了系统安全风险评估方法,并由此制定了一种简单、高效的自适应入侵检测策略.初步实验结果表明,所提的深度防卫自适应入侵检测模型能够全面、有效地检测系统的异常行为,可以自适应地动态调整系统安全与系统性能之间的平衡,具有检测精度高、系统资源消耗小的优点.  相似文献   

18.
基于数据挖掘的入侵检测   总被引:8,自引:0,他引:8  
随着计算机网络在现代社会中扮演日益重要的角色,信息安全成为信息技术研究领域最重要的研究课题之一。而入侵构成了严重的安全风险,如何有效防范和检测入侵行为是信息监管中的热点研究问题,传统入侵检测模型的建立过程效率低,研究成本高,而数据挖掘在未知知识获取方面具有独特优势,因此基于数据挖掘的入侵检测成为研究热点,针对入侵现状、入侵检测和数据挖掘研究及开发状况,笔者分析了基于数据挖掘的入侵检测研究背景、体系结构、研究方法,所需解决的问题及今后的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号