首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
多元混合PBX炸药孔隙塌缩热点模型   总被引:1,自引:0,他引:1  
为能模拟不同炸药配比的多元混合PBX炸药冲击起爆过程,在弹黏塑性双球壳孔隙塌缩热点模型的基础上,考虑混合炸药中各炸药组分之间的耦合机制,建立了一个多元混合PBX炸药孔隙塌缩热点模型,并根据该模型给出了新的热点反应速率的理论表达式. 运用该模型计算了不同炸药配比的HMX/TATB二元混合PBX炸药在冲击起爆点火阶段的反应度. 计算结果表明,该模型可以较好地描述炸药配比对多元混合PBX炸药点火过程的影响.   相似文献   

2.
损伤炸药的冲击起爆数值模拟   总被引:3,自引:1,他引:2  
通过对炸药化学反应速率方程的分析,建立了基于KIM弹粘塑性球壳塌缩热点模型原理的三项式整体化学反应速率方程模型. 运用遗传算法确定了反应速率方程相关参数,通过与Forest-Fire反应速率模型数值模拟结果对比验证所建模型的合理性. 将所建反应速率方程模型嵌入有限元程序对PBX炸药起爆过程进行数值模拟,数值模拟结果与试验结果吻合较好,可以描述分析受冲击加载造成孔隙率、颗粒尺寸等变化的损伤炸药的冲击起爆过程.  相似文献   

3.
为了探寻在准等熵加载下炸药的起爆响应特性和爆轰成长规律问题,利用磁驱动加载设备CQ-4装置和多路光子多普勒测速技术PDV,建立了炸药1维准等熵加载起爆响应试验测试系统.在1次准等熵加载下获得5个不同厚度的高聚物粘结炸药PBXC03响应背面粒子速度时间历史,得到炸药准等熵加载起爆爆轰成长特性.实验结果表明,获取的各个厚度炸药样品背面的粒子速度波形干净,细节清楚.准等熵加载进入炸药后,在传播的过程中首先由于波的追赶作用而形成前导冲击波.而且,准等熵加载下起爆机制与冲击起爆机制存在明显的差异,准等熵加载在较强冲击波形成前,热点形成较少,炸药几乎不发生反应;形成较强冲击波后,炸药响应表现为由热点机制主导的冲击起爆爆轰成长特性.   相似文献   

4.
杆式侵彻体冲击起爆反应装甲影响因素研究   总被引:3,自引:0,他引:3  
该文对杆式侵彻体冲击起爆反应装甲进行了试验研究,分析侵彻体对夹层炸药的盖板、面板的分层侵彻机理,在Held准则基础上,提出了与杆式侵彻体的密度、长度、直径、速度因素有关的冲击起爆反应装甲的关系式。该关系式对于研究对付反应装甲的动能弹具有指导意义,并对反导冲击起爆机制研究具有一定的参考价值。  相似文献   

5.
为了解细观结构差异和热力作用对高聚物黏结炸药(polymer bonded explosives, PBX)损伤的影响,采用Voronoi方法建立三维细观模型,并考虑颗粒的弹塑性和黏结剂的弹黏塑性以及界面内聚力本构关系,分析不同细观结构PBX在热力载荷下的损伤演化机理。结果表明升温不易造成界面的损伤,降温时收缩率较小的黏结剂对颗粒的收缩有阻碍,导致界面间法向拉应力增大,易造成界面损伤。提高黏结剂含量,有利于减小降温时界面的损伤程度。当黏结剂含量相近时,颗粒粒径越趋于一致,界面损伤程度越小。在低压作用下,损伤由法向应力导致转为由切向应力导致,损伤程度减小,但当压力过大时界面产生新的损伤。  相似文献   

6.
本文研究了应变率效应对加筋板在瞬态冲击载荷作用下的影响,文中采用弹-粘塑性材料模型进行塑性动力分析,导出了加筋板结构弹-粘塑性大变形的单元刚度矩阵,并将平衡迭代用于求解弹-粘塑性大变形动力平衡方程中,导出了迭代公式.本文还将这些理论编成了通用计算机程序,计算了若干实例,得出了较好结果.  相似文献   

7.
含能破片冲击引爆屏蔽炸药研究   总被引:5,自引:1,他引:4  
基于一维冲击波理论和Walker与Wasley的冲击起爆能量判据,对含能破片冲击屏蔽炸药过程进行了理论与数值分析.分别考虑了破片类型、破片尺寸和屏蔽壳厚度对冲击起爆的影响.结果显示,钢壳破片起爆能力优于铝壳破片,临界起爆速度随着含能材料直径的增长和屏蔽壳厚度的减小而降低;理论模型与数值计算结果吻合较好.由实验研究发现,与普通惰性破片的毁伤作用机理不同,含能破片主要是利用冲击波能量引发含能物质反应,反应释放的化学能与冲击波能量叠加对目标进行毁伤;能量输出方式主要为化学反应能.  相似文献   

8.
瞬态与粘性效应下的材料成形能量法   总被引:1,自引:0,他引:1  
引用率变形的塑性本构方程,计入材料的弹性变形历史,研究瞬态与粘性效应下材料成形的能量法.将理想刚塑性材料成形理论发展到率敏感的弹/粘塑性材料成形理论.  相似文献   

9.
对Burgers模型中串联黏壶进行了改进,并将改进模型看成是由三单元Van Der Poel模型与黏塑性元件串联组成.综合运用黏塑性力学和损伤力学理论,同时引入应变硬化变量和损伤软化变量,建立了基于应变硬化理论的沥青混合料损伤蠕变模型.再采用半正矢波间歇荷载模拟实际路面轮载作用,推导了重复荷载作用下沥青混合料永久变形的弹黏塑性损伤力学模型.根据室内重复荷载永久变形试验结果,运用最小二乘法原理,得到了弹黏塑性损伤力学模型的相关参数,并对该模型进行了验证.验证结果表明,该模型可以全面、统一地描述沥青混合料永久变形的三阶段特性.  相似文献   

10.
针对破片斜冲击状态下引爆屏蔽固体炸药问题开展了研究。从理论上建立了与冲击角度相关的冲击压力计算方法。结合炸药起爆判据,可确定炸药冲击起爆的临界速度。采用Lee-Tarver点火增长模型和LS-DYNA仿真软件,对破片斜撞击屏蔽装药冲击起爆过程进行了数值模拟。利用升-降法确定了临界起爆速度,验证了理论模型的有效性;并分析了破片材料、入射角和靶板厚度对冲击起爆JO—9195固体炸药临界速度的影响。结果表明:理论计算和数值模拟误差不超过5.98%,吻合较好,表明所建立的理论计算方法是有效的。在相同条件下,钨合金破片相对于钢质和铜质破片临界起爆速度低;随着入射角和靶板厚度增加,冲击起爆的临界速度也随之增大。  相似文献   

11.
BIC实验的数值模拟研究   总被引:1,自引:0,他引:1  
为研究低速撞击作用下炸药点火机理,采用非线性动力学LS-DYNA程序和Visco-SCRAM本构模型数值模拟弹道撞击室实验. 计算得到了5.35 m/s初始撞击条件下炸药发生点火反应,与文献中的实验结果比较吻合. 计算结果表明,炸药整体温升并不能导致其点火反应,而裂纹面摩擦生热形成热点能使炸药发生点火反应,计算结果可为低速撞击条件下炸药装药发生非冲击点火反应机理提供新的依据和支撑.   相似文献   

12.
为研究背板对破片冲击起爆屏蔽装药的影响,运用数值仿真方法分析了破片冲击起爆有无背板装药的情况. 数值仿真表明,由于背板对冲击波的反射作用使背板附近处冲击波压力幅值增加,从而使装药的临界起爆速度下降. 随着装药厚度的增加,背板对于装药的冲击起爆影响逐渐下降;背板材料对于反射冲击波幅值有所影响,但不同背板材料间装药临界起爆速度相差并不大.  相似文献   

13.
实验研究了压阻计对推进剂化学反应区流场的影响,在提高实验精度的前提下测得了改性双基推进剂冲击波起爆过程中的压力变化,利用拉氏分析技术得到了反应过程中的质点速度、反应度变化历史。在反应区整体标定的基础上,提出了改性双基推进剂的化学反应速率方程并进行了系数标定,同时对改性双基推进剂的一维起爆过程进行了数值模拟。  相似文献   

14.
活性破片引爆屏蔽装药机理研究   总被引:6,自引:5,他引:1  
采用弹道实验对活性破片引爆屏蔽装药作用行为进行研究,且与同质量钨合金破片引爆能力进行对比,并基于AUTODYN-2D平台对破片冲击起爆屏蔽装药行为展开数值模拟研究,通过数值模拟与实验结果的对比得到活性破片引爆屏蔽装药机理.结果表明,10g活性破片在1 287m/s以上碰撞速度下,能可靠引爆设有10mm厚LY12硬铝或6mm厚A3钢面板的注装B炸药,而同质量钨合金破片在1 527m/s碰撞速度下,只能造成屏蔽装药碎裂而不能将其引爆.活性破片撞击金属面板后,自身在装药内部发生的剧烈化学反应是其引爆装药的主控机制,这显著降低了破片引爆屏蔽装药所需的动能.  相似文献   

15.
激波后沉积粉尘的燃烧特征   总被引:4,自引:0,他引:4  
激波掠过可燃沉积粉尘后将使粉尘颗粒上扬、点火与燃烧。该文给出了描述该现象的理论模型,并对此进行了数值模拟。结果表明,激波马赫数越大,气相中氧气含量越高,颗粒初始直径越小,则颗粒的点火延迟时间越小,颗粒温度及化学反应速率上升越快,颗粒的燃烧时间愈短。  相似文献   

16.
利用Lagrange实验结果和改进的Lagrange分析方法,对固体炸药在动高压流场中的本构方程进行了整体标定.未反应炸药和已反应产物都采用JWL状态方程.分析得到了每个Lagrange位置上的压力p,质量速度u,比容v,比内能随e时间的变化过程,同时可标定基于JWL状态方程的固体炸药的点火与增长型反应速率方程.标定的JWL状态方程和点火与增长型反应速率方程具有良好的相容性,参数可以直接用于动力学计算程序LS-DYNA3D.本文对铸装TNT炸药的二维起爆过程进行了计算.  相似文献   

17.
以水雷主装药的热刺激安全性因素为研究对象,选用RDX基PBX炸药作为主装药,通过Fluent软件进行仿真计算,着重分析烤燃过程中温升和装药尺寸对炸药热爆炸的影响规律,为提高水雷主装药安全性能提供了有效的依据。研究结果表明:恒温烤燃时随着温度的上升,炸药的爆炸延滞期呈指数形式下降;炸药装药的点火温度与升温速率无关,随升温速率的提高,炸药爆炸延滞期呈现非线性下降趋势;不同升温速率下,随着装药尺寸的变大,点火位置逐渐从中心移动到药柱边缘处,随着升温速率的增加,点火时间逐渐降低,且装药直径对点火时间基本无影响,点火温度先降低后升高,装药直径与点火温度为非线性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号