首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogenic signals stimulate cell division by activating cyclin/cyclin-dependent kinase (CDK) complexes. Their timely regulation ensures proper cell cycle progression. It is therefore not surprising that cyclin/CDK complexes are integrators of multiple signals from both the extracellular environment and intracellular cues. Important regulators of cyclin/CDKs are the CDK inhibitors that have attracted attention due to their association with disease. p27KIP1 is a CDK inhibitor that controls CDK activity throughout the cell cycle. As a CDK inhibitor, p27KIP1 has tumor suppressor activity. Besides CDKs, p27KIP1 regulates additional cellular processes, including cell motility, some of which seem to mediate oncogenic activities of p27KIP1. These activities of p27KIP1 are regulated through multiple phosphorylation sites, targeted by several signal transduction pathways. Understanding functions and regulation of p27KIP1 will be important to determine which isoform of p27KIP1 has anti- or pro-tumorigenic activities. Such knowledge might be of prognostic value and may offer novel therapeutic windows. Received 26 May 2008; accepted 17 June 2008  相似文献   

2.
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.  相似文献   

3.
p27BBP/eIF6 is an evolutionarily conserved regulator of ribosomal function. It is necessary for 60S biogenesis and impedes improper joining of 40S and 60S subunits, regulated by protein kinase C or Efl1p. No data on p27BBP/eIF6 during early development of Metazoa are available. We studied the distribution, post-translational changes and association with the cytoskeleton of p27BBP/ eIF6 during Xenopus oogenesis and early development. Results indicate that p27BBP/eIF6 is present throughout oogenesis, partly associated with 60S subunits, partly free and with little cytoskeleton bound. During prophase I, p27BBP/eIF6 is detected as a single band of 27-kDa. Upon maturation induced by progesterone or protein kinase C, a serine-phosphorylated 29 kDa isoform appears and is kept throughout development to the neurula stage. Confocal microscopy showed that the distribution of p27BBP/eIF6 and its association with the cytoskeleton varies according to oogenesis stages. Briefly, in stage 6 oocytes, p27BBP/eIF6 has a limited dot-like distribution, and does not co-localize with cytokeratin, whereas upon maturation it spreads throughout the cytoplasm. After fertilization, a large fraction coalesces around cytomembranes and a cytochalasin B-sensitive co-localization with cytokeratin occurs. RNAse removes p27BBP/eIF6 from the cytokeratin fibres. Developmental data suggest a role of p27BBP/eIF6 in controlling ribosomal availability or regulating cross-talk between ribosomes and the cytoskeleton.Received 7 April 2005; received after revision 11 May 2005; accepted 25 May 2005R. Carotenuto and N. De Marco contributed equally to the paper  相似文献   

4.
In mouse embryonic stem (mES) cells, the expression of p27 is elevated when differentiation is induced. Using mES cells lacking p27 we tested the importance of p27 for the regulation of three critical cellular processes: proliferation, differentiation, and apoptosis. Although cell cycle distribution, DNA synthesis, and the activity of key G1/S-regulating cyclin-dependent kinases remained unaltered in p27-deficient ES cells during retinoic acid-induced differentiation, the amounts of cyclin D2 and D3 in such cells were much lower compared with normal mES cells. The onset of differentiation induces apoptosis in p27-deficient cells, the extent of which can be reduced by artificially increasing the level of cyclin D3. We suggest that the role of p27 in at least some differentiation pathways of mES cells is to prevent apoptosis, and that it is not involved in slowing cell cycle progression. We also propose that the pro-survival function of p27 is realized via regulation of metabolism of D-type cyclin(s).Received 25 February 2004; received after revision 5 April 2004; accepted 15 April 2004  相似文献   

5.
CCN2, also known as connective tissue growth factor, is a member of the CCN (CCN1–6) family of modular matricellular proteins. Analysis of CCN2 function in vivo has focused primarily on its key role as a mediator of excess ECM synthesis in multiple fibrotic diseases. However, CCN2 and related family members are widely expressed during development. Recent studies using new genetic models are revealing that CCN2 has essential roles in the development of many tissues. This review focuses on current and emerging data on CCN2 and its functions in chondrogenesis and angiogenesis, and on new studies showing that CCN2 has essential functions during embryonic and postnatal development in a number of epithelial tissues.  相似文献   

6.
7.
8.
9.
10.
Roles of Bacillus endospores in the environment   总被引:2,自引:0,他引:2  
The occurrence and diverse roles of Bacillus spp. and their endospores in the environment is reviewed, with particular emphasis on soil ecology, host-symbiont and host-parasite interactions, and human exploitation of spores as biological control agents and probiotics.  相似文献   

11.
12.
13.
G1 phase cell cycle proteins, such as cyclin-dependent kinase 6 (Cdk6) and its activating partners, the D-type cyclins, are important regulators of T-cell development and function. An F-box protein, called F-box only protein 7 (Fbxo7), acts as a cell cycle regulator by enhancing cyclin D-Cdk6 complex formation and stabilising levels of p27, a cyclin-dependent kinase inhibitor. We generated a murine model of reduced Fbxo7 expression to test its physiological role in multiple tissues and found that these mice displayed a pronounced thymic hypoplasia. Further analysis revealed that Fbxo7 differentially affected proliferation and apoptosis of thymocytes at various stages of differentiation in the thymus and also mature T-cell function and proliferation in the periphery. Paradoxically, Fbxo7-deficient immature thymocytes failed to undergo expansion in the thymus due to a lack of Cdk6 activity, while mature T cells showed enhanced proliferative capacity upon T-cell receptor engagement due to reduced p27 levels. Our studies reveal differential cell cycle regulation by Fbxo7 at different stages in T-cell development.  相似文献   

14.
Summary Correlations between left ventricular enddiastolic pressure of the heart and first and second derivation of left ventricular pressure curve (dp/dt, d 2 p/dt 2 respectively) were examined at various hemodynamic conditions. The results showed only a particular dependence ofdp/dt andd 2 p/dt 2 from enddiastolic pressure. Therefore, it is concluded, that enddiastolic pressure is not the most important factor, which influences the dynamics of ventricular contraction.  相似文献   

15.
Synapses are central stages for neurotransmission. Neurotransmitters are released from the presynaptic membrane of one neuron, and bind to the receptors accumulated at the postsynaptic membrane, followed by the activation of the other neuron. The strength of a synapse is modified depending on the history of the previous neurotransmissions. This property is called synaptic plasticity and is implicated in learning and memory. Synapses contain not only the components essential for neurotransmission but also the signalling molecules involved in synaptic plasticity. The elucidation of the molecular structures of synapses is one of the key steps to understand the mechanism of learning and memory. Recent studies have revealed postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 as a core component in the architecture of synapses. In this review, we summarize up-to-date information about PSD-95/SAP90 and its interacting proteins, and the organization of synapses orchestrated  相似文献   

16.
With a combination of thaw-mount autoradiography using a tritiated 20-hydroxyecdysone agonist, ponasterone A, and immunocytochemistry with a monoclonal antibody to 29 K-prothoracicotropic hormone, high affinity binding sites for ecdysteroids were identified in the tissues of the neuroendocrine-endocrine axis inManduca sexta larvae. At specific times during larval-pupal development in fifth stadium larvae, nuclear ecdysteroid binding sites were present in the cerebral prothoracicotropes, the corpora allata and prothoracic glands, the main axis for the regulation and production of ecdysteroids. A stage-specific appearance of ecdysteroid receptors also occurred in cells of fat body, midgut and Malpighian tubules, tissues which convert ecdysone into 20-hydroxyecdysone. Our data identify new target tissues for ecdysteroids and suggest that ecdysteroids could affect their own production at the genomic level via long and short feedback loops.  相似文献   

17.
Roles for interleukin-2(IL-2) and IL-4 in the generation of murine allocytotoxine T lymphocytes (allo-CTL) in the primary and secondary responses were studied in vitro. The generation of allo-CTL in the primary response was inhibited by anti-IL-2 monoclonal antibody (mAb), but was not inhibited by anti-IL-4 mAb. On the other hand, the generation of allo-CTL in the secondary response was partially inhibited by either anti-IL-2 or anti-IL-4 mAb, and it was almost completely inhibited by the combination of two mAbs. CD8+ cell-depleted splenocytes produced IL-2, but not IL-4, in response to alloantigens in the primary response, and these cells produced both IL-2 and IL-4 in the secondary response. Both exogenous IL-2 and IL-4 induced functionally active allo-CTL in the primary response from CD4+ cell-depleted splenocytes when these cells were stimulated with T cell-depleted allogeneic cells. These results suggest that the allo-CTL induction in the primary response is IL:-2-dependent and secondary allo-CTL induction is both IL-2 and IL-4-dependent, because unprimed CD4+ T cells produce IL-2, but not IL-4, whereas primed cells produce both IL-2 and IL-4 in response to alloantigens.  相似文献   

18.
19.
Roles for interleukin-2 (IL-2) and IL-4 in the generation of murine allocytotoxine T lymphocytes (allo-CTL) in the primary and secondary responses were studied in vitro. The generation of allo-CTL in the primary response was inhibited by anti-IL-2 monoclonal antibody (mAb), but was not inhibited by anti-IL-4 mAb. On the other hand, the generation of allo-CTL in the secondary response was partially inhibited by either anti-IL-2 or anti-IL-4 mAb, and it was almost completely inhibited by the combination of two mAbs. CD8+ cell-depleted splenocytes produced IL-2, but not IL-4, in response to alloantigens in the primary response, and these cells produced both IL-2 and IL-4 in the secondary response. Both exogenous IL-2 and IL-4 induced functionally active allo-CTL in the primary response from CD4+ cell-depleted splenocytes when these cells were stimulated with T cell-depleted allogeneic cells. These results suggest that the allo-CTL induction in the primary response is IL:-2-dependent and secondary allo-CTL induction is both IL-2 and IL-4-dependent, because unprimed CD4+ T cells produce IL-2, but not IL-4, whereas primed cells produce both IL-2 and IL-4 in response to alloantigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号