首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.  相似文献   

2.
Osteoclasts are multinucleated cells responsible for bone resorption. Osteoclasts adhere to the bone surface through integrins and polarize to form actin rings, which are formed by the assembly of podosomes. The area contained within actin rings (also called sealing zones) has an acidic pH, which causes dissolution of bone minerals including hydroxyapatite and the degradation of matrix proteins including type I collagen by the protease cathepsin K. Osteoclasts resorb bone matrices while moving on bone surfaces. Osteoclasts change their cell shapes and exhibit three modes for bone resorption: motile resorbing mode for digging trenches, static resorbing mode for digging pits, and motile non-resorbing mode. Therefore, the actin cytoskeleton is actively remodeled in osteoclasts. Recent studies have revealed that many molecules, such as Rac, Cdc42, Rho, and small GTPase regulators and effectors, are involved in actin cytoskeletal remodeling during the formation of actin rings and resorption cavities on bone slices. In this review, we introduce how these molecules and non-canonical Wnt signaling regulate the bone-resorbing activity of osteoclasts.  相似文献   

3.
Cellular communication between the bone component cells osteoblasts, osteocytes and (pre-)osteoclasts is essential for bone remodeling which maintains bone integrity. As in the remodeling of other organs, cell death is a trigger for remodeling of bone. During the systematic process of bone remodeling, direct or indirect cell–cell communication is indispensable. Thus, osteoblasts induce migration and differentiation of preosteoclasts, which is followed by bone resorption (by mature multinuclear osteoclasts). After completion of bone resorption, apoptosis of mature osteoclasts and differentiation of osteoblasts are initiated. At this time, the osteoblasts do not support osteoclast differentiation but do support bone formation. Finally, osteoblasts differentiate to osteocytes in bone or to bone lining cells on bone surfaces. In this way, old bone areas are regenerated as new bone. In this review the role of cell–cell communication in bone remodeling is discussed.  相似文献   

4.
Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)—mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.  相似文献   

5.
6.
Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E(2) (PGE(2)). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE(2) causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE(2)-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses.  相似文献   

7.
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.  相似文献   

8.
9.
Rab44 is an atypical Rab GTPase that contains some additional domains such as the EF-hand and coiled-coil domains as well as Rab-GTPase domain. Although Rab44 genes have been found in mammalian genomes, no studies concerning Rab44 have been reported yet. Here, we identified Rab44 as an upregulated protein during osteoclast differentiation. Knockdown of Rab44 by small interfering RNA promotes RANKL-induced osteoclast differentiation of the murine monocytic cell line, RAW-D or of bone marrow-derived macrophages (BMMs). In contrast, overexpression of Rab44 prevents osteoclast differentiation. Rab44 was localized in the Golgi complex and lysosomes, and Rab44 overexpression caused an enlargement of early endosomes. A series of deletion mutant studies of Rab44 showed that the coiled-coil domain and lipidation sites of Rab44 is important for regulation of osteoclast differentiation. Mechanistically, Rab44 affects nuclear factor of activated T-cells c1 (NFATc1) signaling in RANKL-stimulated macrophages. Moreover, Rab44 depletion caused an elevation in intracellular Ca2+ transients upon RANKL stimulation, and particularly regulated lysosomal Ca2+ influx. Taken together, these results suggest that Rab44 negatively regulates osteoclast differentiation by modulating intracellular Ca2+ levels followed by NFATc1 activation.  相似文献   

10.
11.
Interleukin (IL)-33 is a recently described pro-inflammatory cytokine. Here we demonstrate IL-33 as a regulator of functional osteoclasts (OCs) from human CD14+ monocytes. IL-33 stimulates formation of tartrate-resistant acid phosphatase (TRAP)+ multinuclear OCs from monocytes. This action was suppressed by anti-ST2 antibody, suggesting that IL-33 acts through its receptor ST2, but not by the receptor activator of NF-κB ligand (RANKL) decoy, osteoprotegerin, or anti-RANKL antibody. IL-33 stimulated activating phosphorylations of signaling molecules in monocytes that are critical for OC development. These included Syk, phospholipase Cγ2, Gab2, MAP kinases, TAK-1, and NF-κB. IL-33 also enhanced expression of OC differentiation factors including TNF-α receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin K, and calcitonin receptor. IL-33 eventually induced bone resorption. This study suggests that the osteoclastogenic property of IL-33 is mediated through TRAF6 as well as the immunoreceptor tyrosine-based activation motif-dependent Syk/PLCγ pathway in human CD14+ monocytes.  相似文献   

12.
13.
Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.  相似文献   

14.
The mouse homozygous for a disruption of the klotho locus (KL-/- or klotho mouse) exhibited multiple pathological conditions resembling human aging. We observed osteopenia in KL-/- mice with a low bone turnover, in which the decrease in bone formation exceeded the decrease in bone resorption and resulted in net bone loss. This pathophysiology resembles closely that of senile osteoporosis in humans. Osteoblastic cells from KL-/- mice proliferated normally in vitro; however, they showed much lower alkaline phosphatase activity and mineralized matrix formation than those from control mice. Cultured osteoclastic cells from KL-/- mice had normal resorbing activity and survival rate, but the differentiation of osteoclastic cells from their precursors was significantly disturbed: in the co-culture of osteoblastic cells and osteoclast precursor cells, the formation of tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells was extremely poor only when osteoclast precursor cells originated from KL-/- mice independently of the origin of the osteoblastic cells. In addition, we found that osteoprotegerin a secreted factor which inhibits osteoclastogenesis, was up-regulated in KL-/- mice. We conclude that a defect in klotho gene expression leads to the independent impairment of osteoblast and osteoclast differentiation, which can be a cause of low-turnover osteoporosis.  相似文献   

15.
Phosphoinositides and signal transduction   总被引:17,自引:0,他引:17  
Phosphoinositides comprise a family of eight minor membrane lipids which play important roles in many signal transducing pathways in the cell. Signaling through various phosphoinositides has been shown to mediate cell growth and proliferation, apoptosis, cytoskeletal changes, insulin action and vesicle trafficking. A number of advances in signal transduction in the last decade has resulted in the discovery of a growing list of proteins which directly interact with high affinity and specificity with distinct phosphoinositides. Equally important, a number of phosphoinositide binding domains such as the pleckstrin homology domain have emerged as critical mediators of phosphoinositide signaling. Here, recent advances in phosphoinositide signaling are discussed. The aim of this review is to highlight particularly exciting advances made in the field over the last few years. The regulation of phosphoinositide metabolism by lipid kinases, phosphatases and phospholipases is reviewed, and considerable emphasis is placed on phosphoinositide-binding proteins. Finally, the role of these lipids in regulating signaling pathways and cell function is described.  相似文献   

16.
Bone continuously remodels throughout life by coordinated actions of osteoclasts and osteoblasts. Abnormalities in either osteoclast or osteoblast functions lead to bone disorders. The p38 MAPK pathway has been shown to be essential in controlling osteoblast differentiation and skeletogenesis. Although p38α is the most abundant p38 member in osteoblasts, its specific individual contribution in regulating postnatal osteoblast activity and bone metabolism is unknown. To elucidate the specific role of p38α in regulating osteoblast function and bone homeostasis, we generated mice lacking p38α in differentiated osteoblasts. Osteoblast-specific p38a knockout mice were of normal weight and size. Despite non-significant bone alterations until 5?weeks of age, mutant mice demonstrated significant and progressive decrease in bone mineral density from that age. Adult mice deficient in p38a in osteoblasts displayed a striking reduction in cancellous bone volume at both axial and appendicular skeletal sites. At 6?months of age, trabecular bone volume was reduced by 62?% in those mice. Mutant mice also exhibited progressive decrease in cortical thickness of long bones. These abnormalities correlated with decreased endocortical and trabecular bone formation rate and reduced expressions of type 1 collagen, alkaline phosphatase, osteopontin and osteocalcin whereas bone resorption and osteoclasts remained unaffected. Finally, osteoblasts lacking p38α showed impaired marker gene expressions and defective mineralization in vitro. These findings indicate that p38α is an essential positive regulator of osteoblast function and postnatal bone formation in vivo.  相似文献   

17.
18.
Hyaluronan synthesis and degradation in cartilage and bone   总被引:1,自引:0,他引:1  
Hyaluronan (HA) is a large but simple glycosaminoglycan composed of repeating D-glucuronic acid, β1–3 linked to N-acetyl-D-glucosamine β1–4, found in body fluids and tissues, in both intra- and extracellular compartments. Despite its structural simplicity, HA has diverse functions in skeletal biology. In development, HA-rich matrices facilitate migration and condensation of mesenchymal cells, and HA participates in joint cavity formation and longitudinal bone growth. In adult cartilage, HA binding to aggrecan immobilises aggrecan, retaining it at the high concentrations required for compressive resilience. HA also appears to regulate bone remodelling by controlling osteoclast, osteoblast and osteocyte behaviour. The functions of HA depend on its intrinsic properties, which in turn rely on the degree of polymerisation by HA synthases, depolymerisation by hyaluronidases, and interactions with HA-binding proteins. HA synthesis and degradation are closely regulated in skeletal tissues and aberrant synthetic or degradative activity causes disease. The role and regulation of HA synthesis and degradation in cartilage, bone and skeletal development is discussed. Received 5 August 2007; received after revision 19 September 2007; accepted 20 September 2007  相似文献   

19.
Summary In parathyroidectomized suckling rats, bone modeling and the number and activity of cells in the osteoclast population are normal. These findings are at variance with observations in older animals and suggest that factors other than parathyroid hormone influence osteoclast formation and function in the neonate.This work was supported by grants HD-07419 and DE-04629 from the NIH. We thank Darrell Iler for his excellent technical assistance.  相似文献   

20.
Estrogens are important endocrine regulators of skeletal growth and maintenance in both females and males. Studies have demonstrated that the estrogen receptor (ER)-α is the main mediator of these estrogenic effects in bone. Therefore, estrogen signaling via ERα is a target both for affecting longitudinal bone growth and bone remodeling. However, treatment with estradiol (E2) leads to an increased risk of side effects such as venous thromboembolism and breast cancer. Thus, an improved understanding of the signaling pathways of ERα will be essential in order to find better bone specific treatments with minimal adverse effects for different estrogen-related bone disorders. This review summarizes the recent data regarding the intracellular signaling mechanisms, in vivo, mediated by the ERα activation functions (AFs), AF-1 and AF-2, and the effect on bone, growth plate and other estrogen responsive tissues. In addition, we review the recent cell-specific ERα-deleted mouse models lacking ERα specifically in neuronal cells or growth plate cartilage. The newly characterized signaling pathways of estrogen, described in this review, provide a better understanding of the ERα signaling pathways, which may facilitate the design of new, bone-specific treatment strategies with minimal adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号