首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.  相似文献   

2.
Summary Intraperitoneal injection of allogeneic liver cells from 43-day-old male fetuses into normal 60-day female goat fetuses resulted in persistent hemopoietic chimerism in surviving recipients without clinical evidence of graft-versus-host disease. Transplantation of normal fetal liver cells into preimmunocompetent goat fetuses affected with -D-mannosidosis may provide an alternative strategy for evaluating hemopoietic stem cell transplantation in the treatment of human lysosomal storage diseases.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.  相似文献   

4.
5.
The isolation of human epidermal stem cells is critical for their clinical applications. In the present study, we isolated three populations of epidermal keratinocytes according to their ability to adhere to collagen type IV: i.e., rapidly adhering (RA), slowly adhering (SA), and non-adhering (NA) cells. The aim of this study was to characterize RA cells and to investigate the possibility of using these cells for epidermis reconstruction. To identify RA cells, flow cytometric analysis was performed using anti-6 integrin and anti-CD71 antibodies. RA cells express high levels of 6 integrin and low levels of CD71, which are considered as markers of an epidermal stem cell nature. Furthermore, electron microscopy showed that RA cells are small and have a high nuclear to cytoplasmic ratio, whereas SA and NA cells have well-developed cellular organelles and abundant tonofilaments. Western blot analysis showed that RA cells are slow cycling and express p63, a putative epidermal stem cell marker, whereas SA and NA cells express c-Myc, which is known to regulate stem cell fate. To compare epidermal regenerative abilities, skin equivalents (SEs) were made using RA, SA, and NA cells. The epidermis constructed from RA cells was well formed compared to those formed from SA or NA cells. In addition, only SEs with RA cells expressed 6 integrin and 1 integrin at the basal layer. These results indicate that RA cells represent epidermal stem cells and are predominately comprised of stem cells. Therefore, the isolation of RA cells using a simple technique offers a potential route to their clinical application, because they are easily isolated and provide a high yield of epidermal stem cells.Received 2 July 2004; received after revision 20 August 2004; accepted 10 September 2004  相似文献   

6.
Two classes of ovarian steroids, estrogens and progestins, are potent in protecting neurons against acute toxic events as well as chronic neurodegeneration. Herein we review the evidence for neuroprotection by both classes of steroids, provide plausible mechanisms for these potent neuroprotective activities and indicate the need for further clinical trials of both estrogens and progestins in protection against acute and chronic conditions that cause neuronal death. Estrogens at concentrations ranging from physiological to pharmacological are neuroprotective in a variety of in vitro and in vivo models of cerebral ischemia and brain trauma as well as in reducing key neuropathologies of Alzheimers disease. While the mechanisms of this potent neuroprotection are currently unresolved, a mitochondrial mechanism is involved. Progestins have been recently shown to activate many of the signaling pathways used by estrogens to neuroprotect, and progestins have been shown to protect against neuronal loss in vitro and in vivo in a variety of models of acute insult. Collectively, results of these animal and tissue culture models suggest that the loss of both estrogens and progestins at the menopause makes the brain more vulnerable to acute insults and chronic neurodegenerative diseases. Further clinical assessment of appropriate regimens of estrogens, progestins and their combination are supported by these data.  相似文献   

7.
Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.  相似文献   

8.
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.  相似文献   

9.
Central nervous system stem cells in the embryo and adult   总被引:19,自引:0,他引:19  
The central nervous system is generated from neural stem cells during embryonic development. These cells are multipotent and generate neurons, astrocytes and oligodendrocytes. The last few years it has been found that there are populations of stem cells also in the adult mammalian brain and spinal cord. In this paper, we review the recent development in the field of embryonic and adult neural stem cells. Received 26 March 1998; received after revision 27 April 1998; accepted 27 April 1998  相似文献   

10.
11.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   

12.
Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline.  相似文献   

13.
The mammalian target of rapamycin (mTOR) pathway is a central controller of growth and homeostasis, and, as such, is implicated in disease states where growth is deregulated, namely cancer, metabolic diseases, and hamartoma syndromes like tuberous sclerosis complex (TSC). Accordingly, mTOR is also a pivotal regulator of the homeostasis of several distinct stem cell pools in which it finely tunes the balance between stem cell self-renewal and differentiation. mTOR hyperactivation in neural stem cells (NSCs) has been etiologically linked to the development of TSC-associated neurological lesions, such as brain hamartomas and benign tumors. Animal models generated by deletion of mTOR upstream regulators in different types of NSCs reproduce faithfully some of the TSC neurological alterations. Thus, mTOR dysregulation in NSCs seems to be responsible for the derangement of their homeostasis, thus leading to TSC development. Here we review recent advances in the molecular dissection of the mTOR cascade, its involvement in the maintenance of stem cell compartments, and in particular the implications of mTOR hyperactivation in NSCs in vivo and in vitro.  相似文献   

14.
-Phenylethyl isothiocyanate (PEITC) is a promising chemoprotective compound that is routinely consumed in the diet as its glucosinolate precursor. Previous studies have shown that PEITC can inhibit phase I enzymes and induce phase II detoxification enzymes along with apoptosis in vitro. The detailed mechanisms involved in the apoptotic cascade, however, have not been elucidated. In the present study, we demonstrate that PEITC can induce apoptosis in hepatoma HepG2 cells in a concentration- and time-dependant manner as determined by TUNEL positive and SubG1 population analysis. Caspase-3-like activity and poly(ADP-ribosyl)polymerase cleavage increased during treatment with 20 µM PEITC; high concentrations, however, induced necrosis. Pre-treatment with Z-VAD-FMK and the caspase-3-specific inhibitor Ac-DEVD-CHO prevented PEITC-induced apoptosis, as determined by caspase-3-like activity and DNA fragmentation. Additional investigations also showed that at concentrations of 5-C10 µM PEITC, DNA synthesis was inhibited and G2/M phase cell cycle arrest occurred, correlating with an alteration in cyclin B1 and p34cdc2 protein levels. Furthermore, we also demonstrate a concentration- and time-dependant burst of superoxide (O2-) in PEITC-treated cells. However, pre- and co-treatment with the free radical scavengers Trolox, ascorbate, mannitol, uric acid and the superoxide mimetic manganese (III) tetrakis (N-methyl-2-pyridyl) porphyrin failed to prevent PEITC-mediated apoptosis. Taken together, these results suggest that PEITC potently induces apoptosis and cell cycle arrest in HepG2 cells and that the generation of reactive oxygen species appears to be a secondary effect.Received 23 December 2002; accepted 22 April 2003  相似文献   

15.
Many kinds of cells, including embryonic stem cells and tissue stem cells, have been considered candidates for transplantation therapy for neuro- and muscle-degenerative diseases. Bone marrow stromal cells (MSCs) also have great potential as therapeutic agents since they are easily isolated and can be expanded from patients without serious ethical or technical problems. Recently, new methods for the highly efficient and specific induction of functional neurons and skeletal muscle cells have been developed for MSCs. These induced cells were transplanted into animal models of stroke, Parkinson’s disease and muscle degeneration, resulting in the successful integration of transplanted cells and improvement in the behavior of the transplanted animals. Here I describe the discovery of these induction systems and focus on the potential use of MSC-derived cells for ‘auto-cell transplantation therapy’ in neuro- and muscle-degenerative diseases. Received 27 April 2006; received after revision 5 June 2006; accepted 22 August 2006  相似文献   

16.
Fibrocytes: a unique cell population implicated in wound healing   总被引:8,自引:0,他引:8  
Following tissue damage, host wound healing ensues. This process requires an elaborate interplay between numerous cell types which orchestrate a series of regulated and overlapping events. These events include the initiation of an antigen-specific host immune response, blood vessel formation, as well as the production of critical extracellular matrix molecules, cytokines and growth factors which mediate tissue repair and wound closure. Connective tissue fibroblasts are considered essential for successful wound healing; however, their origin remains a mystery. A unique cell population, known as fibrocytes, has been identified and characterized. One of the unique features of these blood-borne cells is their ability to home to sites of tissue damage. This article reviews the identification and characterization of fibrocytes, summarizes the potential role of fibrocytes in the numerous steps of the wound-healing process and highlights the potential role of fibrocytes in fibrotic disease pathogenesis.Received 25 November 2002; received after revision 31 December 2002; accepted 16 January 2003  相似文献   

17.
The field of Parkinsons disease pathogenesis is rapidly evolving from the one of a monolithic and obscure entity into the one of a complex scenario with several known molecular players. The ongoing systematic exploration of the genome holds great promise for the identification of the genetic factors conferring susceptibility to the common non-Mendelian forms of this disease. However, most of the progress of the last 5 years has come from the successful mapping and cloning of genes responsible for rare Mendelian variants of Parkinsons disease. These discoveries are providing tremendous help in understanding the molecular mechanisms of this devastating disease. Here we review the genetics of the monogenic forms of Parkinsons disease. Moreover, we focus on the mechanisms of disease caused by -synuclein and parkin mutations, and the implications of this growing body of knowledge for understanding the pathogenesis of the common forms of the disease. Received 10 March 2004; received after revision 26 April 2004; accepted 29 April 2004  相似文献   

18.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

19.
Caffeine as a psychomotor stimulant: mechanism of action   总被引:10,自引:0,他引:10  
The popularity of caffeine as a psychoactive drug is due to its stimulant properties, which depend on its ability to reduce adenosine transmission in the brain. Adenosine A1 and A2A receptors are expressed in the basal ganglia, a group of structures involved in various aspects of motor control. Caffeine acts as an antagonist to both types of receptors. Increasing evidence indicates that the psychomotor stimulant effect of caffeine is generated by affecting a particular group of projection neurons located in the striatum, the main receiving area of the basal ganglia. These cells express high levels of adenosine A2A receptors, which are involved in various intracellular processes, including the expression of immediate early genes and regulation of the dopamine- and cyclic AMP-regulated 32-kDa phosphoprotein DARPP-32. The present review focuses on the effects of caffeine on striatal signal transduction and on their involvement in caffeine-mediated motor stimulation.Received 8 July 2003; received after revision 7 September 2003; accepted 6 October 2003  相似文献   

20.
Many have hypothesized that cell death in Parkinsons disease is via apoptosis and, specifically, by the mitochondrial-mediated apoptotic pathway. We tested this hypothesis using a mouse dopaminergic cell line of mesencephalic origin, MN9D, challenged with the Parkinsonism-causing neurotoxin MPP+ (1-methyl-4-phenylpyridinium ion). Apoptosis was the main mode of cell death when the cells were subjected to MPP+ treatment under serum-free conditions for 24 h. Caspase-3 and caspase-9, however, were not activated, thus indicating the existence of alternate or compensatory cell death pathway(s) in dopaminergic neuronal cells. Using caspase inhibitors, we demonstrated that these pathways involve caspase-2, –8, –6 and –7. A time-course study indicated that activation of caspase-2 and –8 occurred upstream of caspase-6 and caspase-7. Upon MPP+ challenge, the apoptosis-inducing factor was translocated from the mitochondria into the MN9D cytosol and nucleus. These results suggest the existence of alternative apoptotic pathways in dopaminergic neurons.Received 20 September 2004; received after revision 5 November 2004; accepted 22 November 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号