首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
The potentials of gas generation by kerogen in the late period and by crude oil cracking are closely related to the origin of natural gas in the high- to over mature marine area and their exploration perspectives. The carbon structure of kerogens, with different types and at different evolution stages, have been experimentally studied using the high magnetic field solid ^13C nuclear magnetic resonance technique in order to determine the oil and gas potential of kerogens. Results show that the contents of gas potential carbon(GPC) of types Ⅰ, Ⅱ, Ⅲ kerogens at the high- to over mature stage are very low, indicating their weak gas-generating capacity and limited gas production; however, the content of oil potential carbon(OPC) of the low mature type Ⅰ kerogen is much higher, implying that a large amount of crude oil generated during the oil-generating period will be the material for later gas generation by oil cracking. The kinetic experiment of gas generation by crude oil cracking shows that, when the temperature is about 160℃(R0=1.6%), the crude oil will start to produce large amounts of gas; the temperature range for major gas generation of crude oil is higher than that of the kerogens, and the gas production is 2 to 4 times higher than that of kerogens. The natural gas derived from oil cracking (called oil-cracked gas) is much abundant in methyl hexamethylene, which is quite different from the natural gas produced by thermal degradation of kerogens (named kerogen degradation gas) at high- to over mature stage.  相似文献   

2.
The mechanism of carbon isotopic fractionation for gaseous hydrocarbons is revealed by investigating the residual liquid hydrocarbons in laboratory pyrolysates of n-octodecane. The results indicate that cracking and polymerization in the relatively low temperatures and dispropor-tionation reactions leading to light hydrocarbons and pol-yaromatic hydrocarbons at high temperatures are probably causes for the carbon isotope reversal of gaseous hydrocarbons that is commonly observed in pyrolysis experiments. This study provides significant insight for quantitative modeling of natural gas δ13C values and aid in the identification and assessment of natural gases derived from oil cracking.  相似文献   

3.
Crude oil cracking to gas is the key to determining the exploration potential and strategy for deep hydrocarbon resources.Identifying the factors that affect the threshold and potential of crude oil cracking to gas as well as other possible influencing factors will provide the scientific basis for deep hydrocarbon exploration.A comparison of pyrolysis simulation experiments of crude oil,hydrous crude oil,and various water media under a constant temperature(350℃) and pressure(50 MPa) shows that water plays a large role in crude oil cracking to gas.(1) When water is added,the gas yields increase significantly,including those of alkane gases and non-hydrocarbon gases:the yield of alkane gases increases 1.8-3 times;the yields of H2 and CO2 also increase significantly.This means that water takes part in the process of crude oil cracking to gas,and supplies hydrogen.Therefore,the presence of water will dramatically enhance the potential of crude oil cracking to gas.(2) Mg2+ ions in the formation water promote the crude oil + water reaction to some extent and increase the total yield of alkane gases and the yields of both H2 and CO2 ;more interestingly,the i-C4/n-C4 and i-C5/n-C5 ratios increase significantly.This indicates that Mg2+ ions in formation water act as a catalyst,and a disproportionation reaction is involved in the crude oil + water reaction.This study helps us to understand the factors influencing crude oil cracked gas and to evaluate the hydrocarbon resources in deep sedimentary basins.  相似文献   

4.
Oil cracking gas plays an important role in the resources of natural gas in the basins with high and over mature marine source rocks in China. The prediction of the oil cracking gas resources becomes nec-essary and urgent in the gas exploration in these basins. A marine crude oil sample was pyrolyzed using sealed gold tubes system. The pyrolysates including gas,liquid and solid were quantitatively analyzed. Based on the pyrolysis data and kinetic calculation,the yield correlativity among gas,liquid and solid products was regressed with high correlative coefficients to establish a prediction model suitable for the resource estimation of oil cracking gas. The verification formula for this model was also established on the principle of mass conservation. The affecting factors and the application precondi-tions of this prediction model were discussed. This model would enlighten and provide some new ideas for the resource assessment of natural gas in the high and over mature marine carbonate source rock areas in China. It is expected to be valuable in gas exploration.  相似文献   

5.
Thermal simulation experiment of gas generation from the peat and the coals were performed using the high temperature and pressure apparatus, at temperature ranging from 336.8-600℃, a pressure of 50MPa and two heating rates of 20℃/h and 2℃/h, and the evolution and formation of coalbed gas components were studied. Results show that for the coals, the gaseous products are mainly composed of hydrocarbon gases. However, for the peat the content of hydrocarbon gases in gaseous products is lower than that of non-hydrocarbon components. In the generated hydrocarbon gases methane is predominant and heavy hydrocarbon gases (C2-5) are present in small amount. Meanwhile, carbon dioxide (CO2) predominates the generated non-hydrocarbon gases, and hydrogen (H2) and sul-furated hydrogen (H2S) are existent in trace amount. It is also observed that temperature is the main factor controlling the evolution of coalbed gas generation. With increasing vitrinite reflectance, methane rapidly increases, CO2 sightly increases, and C2-5 hydrocarbons first increase and then decrease. The peat and Shanxi formation coal have a higher generative potential of coalbed gases than coals and Taiyuan formation coal, respectively, reflecting the effect of the property of organic matter on the characteristics of coalbed gas component generation. In this study, it is found that low heating rate is favorable for the generation of methane, H2 and CO2, and the decomposition of C2-5 hydrocarbons. This shows that heating time plays an important controlling role in the generation and evolution of coalbed gases. The results obtained from the simulation experiment in the study of coalbed gases in natural system are also discussed.  相似文献   

6.
There are abundant natural gas resources in Chinese marine sedimentary basin. The exploration hot shots of natural gas are the Palaeozoic marine strata here in recent years, and several large scale gas fields have been discovered. Chinese Palaeozoic high-post matured and coal measure hydrocarbon source rocks are mainly prone to gas generation in the present. This research considered that gas source rocks and TSR are the key cause of gas enrichment of marine strata. High-quality argillaceous and coal measure hydrocarbon rocks are distributed widely in the Palaeozoic marine strata, which have been in highly matured phase in the present. The argillaceous source rock generally contains various sulfates that could accelerate crude oil cracking to gas for TSR occurrence, and coal measure source rock mainly generates gas, so Chinese marine basin gives priority to accumulating gas. Marine strata have not founded oil reservoirs in the Sichuan Basin and Ordos Basin, and they consist mainly of dry gas. Marine natural gases are the mixed gases of oil cracking gas and coal-formed gas in a general way, oil cracking gases contain usually some H2S and CO2. Hydrocarbon carbon isotopes are very complicated, and methane and ethane isotopic values bear apparent reversal caused by thermal evolution and mixing among different genetic types of natural gas. Coal-formed gases are the main component of Chinese marine natural gas. The Upper Permian of the Sichuan Basin and the Carboniferous-Permian of the Ordos Basin coal measure hydrocarbon source rock present large hydrocarbon generation potential, which are the prospecting highlight of marine natural gas hereafter. Oil cracking gas exploration will be paid much attention to in the Tarim Basin because of the lack of coal measure hydrocarbon source rock.  相似文献   

7.
Although the gas cracked from oil has been believed to be one of the important sources in highly ma-tured marine basins, there are still some debates on its resource potentials and chemical and isotopic compositions. In this study a Cambrian-sourced marine oil sample from the Silurian reservoir of well TZ62 in the central Tarim basin was pyrolyzed using sealed gold tubes with two different pyrolysis schemes: continuous pyrolysis in a closed system and stepwise semi-open pyrolysis. The results show that the maximum weight yield of C1–5 gases occurs at EasyRo=2.3% and the residual gas poten-tial after this maturity is only 43.4 mL/g, about 12% of the yield of 361 mL/g at EasyRo=2.3%. Combined with the results of kinetic modeling, the main stage of gas generation from oil cracking is believed within the EasyRo=1.6%―2.3%. The increase in the volume yield of C1–5 gases at EasyRo>2.3% in a closed system is mainly related to the re-cracking of previously formed C2–5 wet gases, not the direct cracking of oil. The stepwise pyrolysis experiments show that the gas from the cracking of residual oil at EasyRo>2.3% is characterized by very high dryness index (higher than 92%) and heavy methane carbon isotopes ranging from -28.7‰ to -26.7‰, which is quite different from the gases from the con-tinuous pyrolysis in a closed system. The kinetic modeling of methane carbon isotope fractionation shows that the carbon isotopes of methane within the main stage of gas generation (EasyRo<2.3%) are far lighter than the carbon isotopes of the precursor oils under a geological heating rate of 2 ℃/Ma. The above observations and results provide some new clues to the accurate recognition and objective re-source evaluation of oil cracking gas in highly mature marine basins.  相似文献   

8.
Based on the geological background and Gammacerane/C31H(S + R) ratios, source rock depositional environments of the studied oil samples (194) from 13 oilfields were classified into three groups according to salinity: saline-lacustrine facies, fresh to brackish lacustrine facies (including limnetic facies), and semi-saline to saline facies (including marine facies of the Tarim Basin). C5-C13 compound groups in the crude oils were separated by GC, and about 286 compounds were qualitatively analyzed. The geochemical application of the C6- C13 compound groups and their ratios between each group with individual carbon number was investigated. Our studies show that (1) C6-C13 compound groups and their ratios in the crude oils could serve as new reliable parameters for oil-oil correlation because the C6- C13 light fractions are the major oil component, especially in light oil or condensate, in which they account for almost 90% of the whole oil; (2) the compound groups of C7 light hydrocarbons in oils derived from different depositional environments with different salinity have different characteristics; (3) C6-C13 compound groups and ratios may be affected by other factors such as maturity, but they are mainly controlled by salinity of depositional waters.  相似文献   

9.
GC-C-MS on linear isotope analysis equipment makes it possible to measure the hydrocarbon gases at the level of 10 -3-10 -2 μL- By applying this technique the carbon isotopes of C1-C3 of the adsorbed gas from the Triassic oil sand bed of the Aican-l Well in the Turpan-Hami basin were analysed. The δ13C values of C1-C3, are -55.1‰, -38.6‰ and -35.0‰ respectively. In terms of geochemical characteristics of natural gases and crude oils, in combination with basinal geological backgrounds, it is considered that the reservoir adsorbed gas was formed by crude-oil biodegradation, absorbed by reservoir rocks and its oil-gas source is related with the Permain (perhaps including the Carboniferous). The adsorbed gas is obviously different from the Jurassic coal-generated oil and gas.  相似文献   

10.
It is demonstrated by various geochemical indexes that the Zhengjia-Wangzhuang Oilfield with viscous crude oil in the Jiyang Depression has been sourced from the contribution of matured source rocks in the upper Es4. The principal cause leading to the densification of crude oils would be biodegradation, with the degradation level of crude oils being ranked as 2-8; vertically, the biodegradation level increases from the top to bottom of the oil column, with a distinctive biodegradation gradient occurring. Calculated parameters of sterane, terpane and methyl-phenanthrene have indicated that the source-rock's maturity of crude oils and asphaltic sands ranges from 0.7 to 0.9, and based on the calculation of Easy Ro model, the temperature of hydrocarbon generation in the source rock would be within 120-140℃, which coincides with the measurements of reservoir inclusions. The measured homogenization temperature would represent the generation temperature of the source rock, and be fairly different from that of reservoir while being charged with hydrocarbons, which reflects the hydrocarbon-charging to be a fast process, and the period of pool-formation to be consistent with that of peaked generation. According to the evaluation of generation history, the pool-formation could have been occurring in 7-15 Ma. And the biodegradation of crude oils in the study area would be considered to take place in 4-15 Ma based on the examination of biodegradation order and dynamic calculations.  相似文献   

11.
The kinetic parameters of hydrocarbon generation from the marine carbonate source rocks were determined and calibrated through kinetic simulating experiment. The kinetic parameters of hydrocarbon generation then were extrapolated to geological condition by using the relative software. The result shows that gaseous hydrocarbons (C_1, C_2, C_3, C_(4-5)) were generated in condition of 150℃相似文献   

12.
With wax content of 1.62%, heavy oil has been produced from the sandstone reservoirs of Neogene Guantao Formation (Ng1). In the GC and GC-MS RIC profiles of its aliphatic fraction, n-alkanes are totally lost, which shows the result of heavy biodegradedation. However, the remaining trace C13-C36 n-alkanes can be still seen from its m/z 85 mass chromatogram. In addition, a complete series of C35-C73 high molecular weight (HMW) n-alkanes was detected by high-temperature gas chromatography (HTGC). The HMW n-alkane series shows a normal distribution pattern, a major peak at nC43, obvious odd-carbon-number predominance, CPI37—55 and OEP45—49 values up to 1.17 and 1.16—1.20 respectively. The present study not only has conformed the strong resistibility of HMW n-alkanes to biodegradation in crude oils as concluded by previous researchers, but also has provided some significant information on source input and maturity for the heavily biodegraded oil in the Qianmiqiao region.  相似文献   

13.
The molecular compositions and molecular carbon isotopic compositions of gas hydrocarbons produced in the hydrocarbon generation of oil asphaltene from Lunnnan area were investigated by pyrolysis of asphaltene sealed in gold tube in a limited system. The experimental results indicated that oil asphaltene from Lunnan area had relatively high generation potential of methane. However, the molecular compositions and molecular carbon isotopic compositions of gas hydrocarbons in the hydrocarbon generation of oil asphaltene exhibited different characteristics from that of gas hydrocarbons by primary cracking of kerogen and secondary cracking of oil. Based on kinetic simulation with paleo-geothermal data of oil reservoir, the methane produced by cracking of oil asphatene was characterized by relatively light carbon isotopic compositions. This result could not explain relatively heavy carbon isotopic compositions of natural gas from Lunnan area. Pyrolysis of kerogen from source rocks under very high temperature probably made remarkable contributions to natural gas from Lunnan area.  相似文献   

14.
Both essential oils of fresh and air-dried Asarum caulescene (Maxim.) were analyzed by GC-MS in three different polarities. The resuits show that thirty-four components were identified in the oils, and main compounds of both oils were β-pinene (7. 63% vs. 20. 77%), 2 carene (8.94% vs. 7.99%), β-phellandrene (7.80% vs. 14.39%), 1,8-cineole (8. 91% vs. 13. 29%) and germacrone (46. 64% vs. 6.64%), however, the content of monoterpene hydrocarhons(30.29% vs. 52. 30%) and oxygenated sesquiterpenes(47.69% vs. 10.65%) of both oils was different. The antimicrobial activity of the oil was evaluated against 3 fungi and 11 hacteria including 7 clinical isolated strains. Our results showed that both oils presented a broad antimicrobial spectrum, and compared with the essential oil from fresh herb, the extracted oil from dried herb had hetter antimicrohial activity, its minimum inhibitory concentration(cmi) values of dried herh were 0. 16-2. 5 g/L and lowest minimum bactericidal concentration(cmb ) value was 0.31 g/L.  相似文献   

15.
The biogenic gas and premature-low mature associated gases in some medium and small-sized basins of Yannan Province, such as Luliang, Yanglin, Baoshan and Jinggu basins, have beed researched. The results show that the biogenic-gas consists mainly of methane which is more than 99% in gasous hydrocarbons and of lighter carbon isotopic composition with δ13C1 values from -60.0‰ to - 75.4‰. The methane carbon isotopic compositions in the Baoshan Basin is relatively heavy (δ13C1 - 60‰- - 65‰), but those in Luliang and Yanglin basins are lighter (δ13C1, less than -70‰), which implies that the gas field of the Baoshan Basin formed earlier than the others. In the Jinggu Basin, where crude oil is premature-lower mature, the natural gas of associated oil relatively wet and the relative content of methane about 58%-95% in gasous hydrocarbons. Constituently the gas composition is much similar to associated one, but the methane carbon isotopic compositions from - 53.8‰ to - 57.8‰ are obviously richer in 12C than those of general oil fields and similarly characterize the biothermo-catalytic transitional zone gas. Their ethane carbon isotopic compositions from - 34.6‰ to -29.0‰ show that they may be derived from type Ⅰ or Ⅱ source rock. But for the associated gas from lower evolutionary stage, the heavier ethane carbon isotopic composition as well as the reversed order among the carbon isotopic composition of ethane, propylane and butane also implies that some gases from the type Ⅲ organic matter are mixed. The δ13CCo2 of the samples essentially less than - 10‰ may be generated from organic matter.  相似文献   

16.
以热压模拟实验模拟东濮凹陷干酪根热裂解和原油热裂解过程,分析干酪根热裂解气和原油裂解气组分特征的差异,以此建立干酪根热裂解成因气和原油裂解成因气的判识方法;结合东濮凹陷北部地区天然气碳同位素及天然气组分数据,对研究区油型气进行划分,进而探讨干酪根热裂解气与原油裂解气的分布特征。结果表明,研究区古近系油型气分为干酪根热裂解气与原油裂解气,干酪根热裂解气具有相对较高的C1/C2值和较低的C2/C3值特征,而原油裂解气则与之相反。干酪根热裂解气和原油裂解气的分布存在明显差异:前者分布范围更广,后者更近于洼陷中心分布,两者分布的差异性与其生成及成藏条件差异有关。根据干酪根热裂解气与原油裂解气分布特点,推测在邻近洼陷中心区具有良好的干酪根裂解成气及原油裂解成气的条件和油型气勘探前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号