首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在机床对零件进行加工的过程中,主轴回转误差、导轨误差、机床和部件刚度、切削刀具的磨损以及热变形等,这些因素都会影响机床的加工精度,从而产生加工件有尺寸误差的现象,所以对机床加工过程进行精度补偿这是十分必要的。该文将以数控机床为例,从误差防止和误差补偿两方面入手,对机床加工过程中的精度补偿技术进行阐述,分析目前提高数控机床精度补偿技术存在的问题。  相似文献   

2.
数控加工中有机床的运动精度误差,刀具的尺寸误差,刀具、机床及零件的热变形和弹性变形误差,还有编程中的计算误差及加工方法引起的误差等,这些都是导致加工误差的因素。该文将主要探讨车削加工误差补偿技术及其应用。  相似文献   

3.
本文采用直接检测加工区域误差的全环控制方法,分析了加工误差与测量信号的关系及加工误差的表现形式;对机床加工精度的控制(尺寸精度与形状精度);首次提出了用趋势性差分方程描述加工误差;应用自适应控制理论,确定了模型结构形式;并通过在线辨识系统参数,设计了系统的自校正调节器。在实际加工过程中,取得了较为满意的结果。本文为提高数控机床的加工精度提供了一套行之有效的方法,同时也为研究机床加工过程,建立综合性数学模型提供了一条可行的途径。  相似文献   

4.
环境温度作为影响并联机床加工精度的误差源一直被忽视,为提高机床的加工精度,研究了环境温度影响下并联机床的误差分布特性。用全微分法建立机床的误差模型,根据该模型计算工作空间内各点的径向误差和轴向误差,用Matlab绘制各误差的空间分布图及各离散层上的误差等值图,得到了各误差的分布形态及分布规律,并对误差分布规律进行了试验验证。研究表明,径向误差主要受刀轨半径的影响,轴向误差受刀尖点轴向坐标和刀轨半径的共同影响。工作空间边缘区域径向误差较大,向中心区域递减;轴向误差反之。提出误差等值图可用来分析和估算环境温度对并联机床加工误差的影响。  相似文献   

5.
应用齿轮精度理论、现代谱分析技术和误差分离技术,提出通过测量机床所加工的齿轮来诊断机床的传动链误差(工件诊断法)。给出了由机床、刀具和工件系统中各个误差源所产生的齿轮加工误差的数学表达式,阐述了工件诊断法的原理。  相似文献   

6.
以某型号超重型数控落地铣镗床为研究对象,针对重型数控机床样本小、结构复杂等特点,在机床多体运动学模型基础上,建立其空间误差模型,并提出其精度可靠性预测模型,分析运动副的磨损量对机床加工精度的影响程度,找出误差源,确定影响机床加工精度的关键因素,预测机床的维护周期。  相似文献   

7.
研究了五轴机床进给轴实际位置预测方法和零件轮廓误差求解方法,在此基础上提出了五轴机床加工零件轮廓误差预测方法。机床进给轴实际位置的预测,通过辨识选定机床进给轴传递函数和读取待加工零件插补指令、将各轴指令输入各轴传递函数获得。零件轮廓误差的求解,通过正运动学变换求解工件坐标系下待加工零件的指令位置轨迹和实际位置轨迹、求解二者之间的轮廓误差来实现。以S形试件为加工零件,以科德KMC600SUMT五轴铣车立式复合加工中心为加工机床,预测了S缘条直纹面A的轮廓误差。刀尖位置误差和刀轴姿态误差引起的零件轮廓误差随着直纹面的位置变化,误差分别在0.04mm和±7×10-5 rad内。研究结果表明:建立的五轴机床加工零件轮廓误差预测方法,可以在加工前实现零件轮廓误差的精确预估,提前判断选定机床是否能够满足零件轮廓误差的要求,为优化加工参数、保证高速加工下的零件轮廓精度提供依据。  相似文献   

8.
机床导轨误差对零件加工精度的影响   总被引:1,自引:0,他引:1  
机床导轨是机床各主要部件相对位置和运动的基准,它的精度既影响溜板的运动精度又直接影响机床成形运动间的相互几何关系,因此也直接影响零件加工表面的形位精度。在机床精度标准中,溜板运动精度包括下列主要内容:1)溜板移动在垂直面内的直线度;2)溜板移动在水平面内的直线度;3)溜板移动对主轴轴线的平行度及垂直度。在一般的加工要求条件下,分析导轨误差对加工精度的影响时,主要应考虑导轨误差引起刀具与工件在误差敏感方向的相对位移。下面试以普通车床为例进行分析。由于导轨误差引起刀具与工件相对位移,可按下式计算:在水…  相似文献   

9.
机床导轨形状误差优劣会直接影响被加工工件的形状和精度,因此,正确的计算和确定机床导轨形状误差对提高零件的加工质量,保证加工出优质工件,有着极其重要意义.本文根据形状误差评定的基本原则,给出一种优化处理方法,更为科学的计算出机床导轨形状误差,为该项参数的确定提供可靠依据.  相似文献   

10.
切削加工过程中,机床会由于受不同热源影响而发生热变形,产生机床误差即热误差。在各种类型的机床误差中,热误差可占机床总误差的40%~70%,是影响机床加工精度的主要因素。为减小不同热源对机床热误差的影响,提高机床加工精度,目前主要有3种方法:1)通过对机床零部件进行优化设计,提高机床热刚度;2)应用更为有效的隔离措施,尽量减小或隔离热源影响;3)热误差补偿,通过对热误差进行在线预测及实时补偿,减小机床热变形。热误差建模是实时补偿热误差的前提和基础。首先对机床热误差建模技术进行了介绍,并对热误差建模技术领域的国内外研究现状进行分析,总结了目前热误差建模领域存在的主要问题,进而对热误差建模技术的未来发展方向进行了展望。  相似文献   

11.
随着精密加工技术的发展,探究机床各部件生热对精密加工的影响,以提升机床加工精度及精度稳定性成为当前研究重点。本文介绍了精密机床热特性的内、外环境影响因素及控制优化方法,从车间及其机床热环境、结构设计、冷却方式、热误差补偿技术4个方面展开,分析了现代精密机床中误差防止及误差补偿中使用的热设计措施,并针对现有机床温度分布不均、换热效果较差等特点,运用帕尔贴、碳纤维、相变微胶囊材料,结合传热学知识原理,提出了未来解决机床重要部件温升的可发展关键技术方案,以资参考。  相似文献   

12.
基于体对角线机床位置误差的激光矢量测量分析   总被引:5,自引:0,他引:5  
机床空间位置误差的测量和补偿是提高加工精度的重要手段。通过分析机床沿4条体对角线的位移误差与空间位置误差间的矢量关系,提出了利用体对角线多步运动测得的位移误差分离机床运动轴位置误差的矢量分析方法。分析结果表明,新方法不仅可以反映机床的几何精度,而且可以快速分离出3个运动轴的9项位置误差,为实施数控机床的空间位置误差补偿提供了理论基础。  相似文献   

13.
徽细加工技术在现代制造技术中占有极其重要的地位,而微细电火花加工技术是实现微细加工的最有利手段之一.由于工具电极与工件电极之间的宏观作用力微小,因此非常适合微小零部件的加工.机床在加工过程中其工艺系统会产生各种误差,从而影响零件的加工精度.研究机床加工过程误差的产生及防止对提高机床加工精度有着重要的意义.  相似文献   

14.
文章分析机床传动连误差对齿轮加工精度的影响规律,掌握控制加工误差的方法,从而找出减少加工误差的措施,把加工误差控制在公差范围之内.  相似文献   

15.
精度设计是旧机床再制造方案制定的重要理论依据.以DM4500三轴立式机床为研究对象,运用多体系统理论建立了包含21项基本几何误差的精度模型.通过基本几何误差的辨识,间接建立了再制造零部件精度参数与机床空间误差之间的关系.利用精度模型和误差辨识方法,根据设定的再制造零部件的精度参数预测了机床的加工误差.在给定空间误差的条件下,提出基于BP+GA算法的精度分配方法,实现了再制造零部件精度参数的全局优化配置.研究结果已成功应用于旧机床的再制造.  相似文献   

16.
在数控机床或加工中心上采用联机检测轮廓加工误差的方法,不同价值昂贵的坐标测量机,具有简单、省时、经济的特点。分析了数控机床或加工中心的直线运动误差对轮廓加工误差联机检测精度的影响,提出了消除机床几何运动误差影响。提高轮廓加工误差联机检测精度的方法。实验结果表明,所采用的方法可以明显提高轮廓加工误差联机检测精度。  相似文献   

17.
针对机床加工误差预测结果不连续的问题,提出了一种基于多体系统理论的机床加工空间连续误差预测方法。该方法结合多体系统运动学求解特点,将机床部件视作弹性体,利用低序体阵列和传递矩阵来描述机床部件之间的运动关系;基于刚度缩聚理论与最小二乘法原理,提取体单元移动载荷约束下的刚度缩聚模型;基于雅克比传递矩阵建立整机空间加工误差模型。结合切削工艺模拟方法,以某镗铣复合加工中心加工发动机壳体为例,对发动机壳体的立面、底面以及孔特征进行立铣、端铣、镗孔加工误差预测。基于复合工艺约束下的加工误差预测模型,对多种装夹角度下的发动机壳体加工误差进行了对比分析,结果表明,利用多体系统进行低序体阵列描述,有利于实现组合式加工误差求解,可用于机床的组合优化分析;结合切削工艺模拟的复合加工误差分析,以发动机壳体装夹角度为优化目标进行加工工艺优化设计,当转角为90°时,加工精度可提高35%。该方法能够有效地预测加工误差,进而支持机床的工艺优化设计。  相似文献   

18.
五轴联动机床的非线性误差和后置处理算法影响着机床的加工精度。本文针对自主研发的小型立式五轴联动机床进行了非线性误差分析,给出了误差补偿算法;对机床刀轴矢量和机床坐标变换进行了推理,分析UG生成的标准刀位文件和数控G代码之间的关系,利用MATLAB的GUI功能开发了后置处理器。以某眼镜片的修缘加工为例,验证了非线性误差分析和补偿方法的正确性及后处理的有效性。  相似文献   

19.
机床空间位置误差的测量和补偿是提高加工精度的重要手段。分析了数控机床的各项误差元素,建立了数控机床的空间定位误差模型;详细阐述了分步体对角线法用于误差检测和分离的原理,以及不能对机床误差完全辨识的不足。将分步对角线法引入平面测量,分析6条面对角线与位置误差间的关系,提出了一种新的辨识机床各分项误差的方法。该方法操作简单、效率高、所需元件少;不仅可以反映机床的几何精度,而且完全分离出了机床的各项误差元素,为数控机床的空间位置误差补偿提供了理论基础。  相似文献   

20.
在数控强力刮齿加工过程中,针对因刮齿机床各项误差耦合造成的加工精度不高的问题,基于空间交错轴斜齿轮啮合原理,建立内齿圆柱齿轮强力刮齿加工的数学模型。由包含误差的齿面方程与理论齿面方程对比,得到机床各调整参数误差与全齿形法向偏差的变化规律,通过建立机床各调整参数误差与齿形偏差关联函数,提出一种基于建立齿形误差敏感系数矩阵的误差补偿方法。以一个内齿圆柱齿轮的刮齿加工计算实例验证本文所提方法的可行性。研究结果表明:因机床调整参数误差造成的齿形偏差得到了高精度补偿和修正,有效提高了强力刮齿的加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号