共查询到20条相似文献,搜索用时 0 毫秒
1.
In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory. 相似文献
2.
3.
4.
Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells 总被引:4,自引:0,他引:4
Ample evidence exists for histaminergic and noradrenergic projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance, increased chloride conductance and electrogenic pump stimulation, and reduction of the anomalous inward rectification. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyperpolarization (AHP) which consists of two components. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+), and has recently been shown to be increased by dopamine. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromolar concentrations of histamine and noradrenaline. This effect is mediated by H2 receptors and beta-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals. 相似文献
5.
Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells 总被引:11,自引:0,他引:11
According to the temporal coding hypothesis, neurons encode information by the exact timing of spikes. An example of temporal coding is the hippocampal phase precession phenomenon, in which the timing of pyramidal cell spikes relative to the theta rhythm shows a unidirectional forward precession during spatial behaviour. Here we show that phase precession occurs in both spatial and non-spatial behaviours. We found that spike phase correlated with instantaneous discharge rate, and processed unidirectionally at high rates, regardless of behaviour. The spatial phase precession phenomenon is therefore a manifestation of a more fundamental principle governing the timing of pyramidal cell discharge. We suggest that intrinsic properties of pyramidal cells have a key role in determining spike times, and that the interplay between the magnitude of dendritic excitation and rhythmic inhibition of the somatic region is responsible for the phase assignment of spikes. 相似文献
6.
Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation 总被引:11,自引:0,他引:11
The dynamic response of nerve cells to synaptic activation and the spatial distribution of biochemical processes regulated by ion concentration are critically dependent on the cell-surface distribution of ion channels. In the hippocampus, intracellular calcium-ion concentration is thought to influence the biochemical events associated with kindling, excitotoxicity, and long-term potentiation. Computer models of hippocampal pyramidal cells also indicate that calcium-channel location influences dynamic characteristics such as bursting. Here, we have used in situ microfluorometric imaging in brain slices to directly measure the spatial distribution of calcium accumulation in guinea-pig CA1 pyramidal cells during trains of orthodromic synaptic stimulation. Calcium accumulation is substantial throughout the entire proximal section of the apical and basal dendrites. Most of this accumulation results from influx through non-NMDA (N-methyl-D-aspartate) voltage-gated calcium channels, and in the apical dendrite it drops steeply as the dendrite enters stratum moleculare, the termination zone of perforant path afferents. These results demonstrate a marked segregation of calcium-channel activity and directly show a spatial distribution of calcium accumulation during orthodromic synaptic activation. 相似文献
7.
Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons 总被引:1,自引:0,他引:1
ZHANG Chaofeng DU Huizhi YANG Pin 《科学通报(英文版)》2006,51(16):1961-1966
Lithium is best known for its therapeutic efficacy in the treatment of manic-depressive illness. Its clinical profile includes the antimanic and antidepressant ac- tions as well as prophylaxis of both mania and depres- sion. Despite its efficacy, the mole… 相似文献
8.
9.
Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation 总被引:9,自引:0,他引:9
G Y Hu O Hvalby S I Walaas K A Albert P Skjeflo P Andersen P Greengard 《Nature》1987,328(6129):426-429
Long-term potentiation (LTP) in the hippocampus is an interesting example of synaptic plasticity because of its induction by physiological discharge rates and its long duration. Of the possible biochemical mechanisms that regulate prolonged changes in cell function, protein phosphorylation is a particularly attractive candidate. We have therefore examined the effect of intracellular injection of calcium/diacylglycerol-dependent protein kinase (protein kinase C (PKC] in CA1 pyramidal neurones in hippocampal slices. Injection of the active enzyme elicited long-lasting enhancement of synaptic transmission, similar to LTP, whereas inactivated kinase failed to do so. The observed changes included an increased amplitude of the excitatory post-synaptic potential (e.p.s.p.) and an increased probability of firing and a reduced latency of the associated actin potential. 相似文献
10.
11.
LIU Xinqiu CAO Xiaohua LI Bao-ming 《科学通报(英文版)》2005,50(17):1966-1968
NMDA receptor (NMDA-R) in the amygdala complex is critical for both long-term potentiation (LTP) and formation of conditioned fear memory. It is reported that activation of β-adrenoceptors (β-AR) in the amygdala facilitates LTP and enhances memory consolidation. The present study examined the regulatory effect of β-AR activation on NMDA-R mediated current in pyramidal cells of the basolateral nucleus of amygdala (BLA), using whole-cell recording technique. Bath application of the β-AR agonist isoproterenol enhanced NMDA-induced current, and this facilitatory effect was blocked by co-administered propranolol, a β-AR antagonist. The facilitatory effect of isoproterenol on NMDA-induced current could not be induced when the protein kinase A (PKA) inhibitor Rp-cAMPs was added in electrode internal solution.The present results suggest that β-AR activation in the BLA could modulate NMDA-R activity directly and positively, probably via PKA. 相似文献
12.
13.
Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites 总被引:5,自引:0,他引:5
In the CA1 hippocampal region, intracellular calcium is a putative second messenger for the induction of long-term potentiation (LTP), a persistent increase of synaptic transmission produced by high frequency afferent fibre stimulation. Because LTP in this region is blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist AP5 (DL-2-amino-5-phosphonovaleric acid) and the calcium permeability of NMDA receptors is controlled by a voltage-dependent magnesium block, a model has emerged that suggests that the calcium permeability of NMDA receptor-coupled ion channels is the biophysical basis for LTP induction. We have performed microfluorometric measurements in individual CA1 pyramidal cells during stimulus trains that induce LTP. In addition to a widespread component of postsynaptic calcium accumulation previously described, we now report that brief high frequency stimulus trains produce a transient component spatially localized to dendritic areas near activated afferents. This localized component is blocked by the NMDA receptor antagonist AP5. The results directly confirm the calcium rise predicted by NMDA receptor models of LTP induction. 相似文献
14.
A central aspect of neuronal function is how each nerve cell translated synaptic input into a sequence of action potentials that carry information along the axon, coded as spike frequency. When transduction from a graded depolarizing input to spikes is studied by injecting a depolarizing current, there is often a remarkably long delay to the first action potential, both in mammalian and molluscan neurons. Here, I report that the delayed excitation in rat hippocampal neurons is due to a slowly inactivating potassium current, ID. ID co-exists with other voltage-gated K+ currents, including a fast A current and a slow delayed rectifier current. As ID activates in the subthreshold range, and takes tens of seconds to recover from inactivation, it enables the cell to integrate separate depolarizing inputs over long times. ID also makes the encoding properties of the cell exceedingly sensitive to the prevailing membrane potential. 相似文献
15.
The modulation of voltage-dependent calcium channels by various neurotransmitters has been demonstrated in many neurons. Because of the critical role of Ca2+ in transmitter release and, more generally, in transmembrane signalling, this modulation has important functional implications. Hippocampal neurons possess low-threshold (T-type) Ca2+ channels and both L- and N-type high voltage-activated Ca2+ channels. N-type Ca2+ channels are blocked selectively by omega-conotoxin and adenosine. These substances both block excitatory synaptic transmission in the hippocampus, whereas dihydropyridines, which selectively block L-type channels, are ineffective. Excitatory synaptic transmission in the hippocampus displays a number of plasticity phenomena that are initiated by Ca2+ entry through ionic channels operated by N-methyl-D-aspartate (NMDA) receptors. Here we report that NMDA receptor agonists selectively and effectively depress N-type Ca2+ channels which are involved in neurotransmitter release from presynaptic sites. The inhibitory effect is eliminated by the competitive NMDA antagonist D-2-amino-5-phosphonovalerate, does not require Ca2+ entry into the cell, and is probably receptor-mediated. This phenomenon may provide a negative feedback between the liberation of excitatory transmitter and entry of Ca2+ into the cell, and could be important in presynaptic inhibition and in the regulation of synaptic plasticity. 相似文献
16.
Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons 总被引:11,自引:0,他引:11
Integration and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2(+)-dependent cellular processes such as action potential generation, neurotransmitter release, and epileptogenesis. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (N-methyl(-D-aspartate) and are located in distal dendrites. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites. This increase has been proposed to result from activation of voltage-gated Ca2+ channels. At least four types of voltage-gated Ca2+ channels, designated N, L. T and P, may be involved in these processes. Here we show that L-type Ca2+ channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+ channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses. 相似文献
17.
研究了旋转圆盘铜阳极在酸性NaCl溶液中恒电位电流振荡现象。用logI—E曲线初步研究产生电流振荡的电位范围。实验证实 ,恒电位电流振荡的振幅随转速的增加而减小 ,诱导期随转速的增大而增加 ,转速对振荡频率的影响不大 ;振荡与H+浓度有很大关系 ,振幅随H+浓度降低而减少 ,当H+浓度为 0 0 5mol/dm3 时 ,没有出现电流振荡现象 相似文献
18.
W T Clusin 《Nature》1983,301(5897):248-250
Electrical excitation of cardiac muscle may sometimes be due to initiation of inward current by the presence of Ca2+ ions at the inner surface of the cell membrane. During digitalis toxicity and other conditions that abnormally augment cellular Ca2+ stores, premature release of Ca2+ from the sarcoplasmic reticulum leads to a transient inward current, which is large enough to initiate premature beats and is accompanied by a transient contractile response. This inward current may be mediated either by electrogenic sodium-calcium exchange or by specific Ca2+-activated cation channels that have recently been characterized in tissue cultures of cardiac myocytes. An obvious question raised by these observations is whether release of the sequestered Ca2+ stores during each normal beat exerts a similar influence on membrane potential. To explore this, chick embryonic myocardial cell aggregates were voltage-clamped during abrupt exposure to caffeine, which is known to release Ca2+ from the sarcoplasmic reticulum. The speed of the perfusion system and the relative absence of diffusion barriers in the tissue-cultured cells allowed the effects of caffeine-induced Ca2+ release to be studied on a time scale comparable to that of a single normal beat. We report here that abrupt exposure of the cells to caffeine produced a transient inward current having similar features to that of digitalis toxicity, and which was both large enough and rapid enough to potentially contribute to the action potential. 相似文献
19.
This study addressed the effects of Yb3+ on voltage-gated sodium currents in rat hippocampal neurons using the whole-cell patch-clamp technique. Voltage-clamp recordings in single neurons were filtered and stored in a computer. Yb3+ increased the amplitude of sodium currents in a concentration-dependent and voltage-dependent man- ner. The 50 % enhancement concentration of Yb3+ on sodium currents was about 8.97 μmol/L, which was dif- ferent from the inhibitory effects of Yb3+ on potassium current. The analysis on the activation and inactivation kinetics of Na+ current showed that 100 μmol/L Yb3+ did not change the process of activation and inactivation. In addition, the times reaching the peak of current (t) and inactivated time constant (τ) were voltage dependent. 100 μmol/L Yb3+ significantly prolonged the time to peak at -70 and -80 mV. The effect disappeared at the positive direction of -70 mV. Furthermore, Yb3+ decreased r val- ues to more positive values than -80 mV. In total, Yb3+ did not change the process of activation, but impelled inacti- vated process. Yb3+ mainly increased the Na+ current through changing its conductance. It might be one of the mechanisms that Yb3+ affected the hippocampal neurons. 相似文献
20.
Neuronal activity in the motor cortex is understood to be correlated with movements, but the impact of action potentials (APs) in single cortical neurons on the generation of movement has not been fully determined. Here we show that trains of APs in single pyramidal cells of rat motor cortex can evoke long sequences of small whisker movements. For layer-5 pyramids, we find that evoked rhythmic movements have a constant phase relative to the AP train, indicating that single layer-5 pyramids can reset the rhythm of whisker movements. Action potentials evoked in layer-6 pyramids can generate bursts of rhythmic whisking, with a variable phase of movements relative to the AP train. An increasing number of APs decreases the latency to onset of movement, whereas AP frequency determines movement direction and amplitude. We find that the efficacy of cortical APs in evoking whisker movements is not dependent on background cortical activity and is greatly enhanced in waking rats. We conclude that in vibrissae motor cortex sparse AP activity can evoke movements. 相似文献