共查询到14条相似文献,搜索用时 109 毫秒
1.
Nd等价取代Bi_4Ti_3O_(12)-SrBi_4Ti_4O_(15)的A位,形成SrBi_(8-x)Nd_xTi_7O_(27)(x=0.00~1.50)共生陶瓷.结果表明:Nd掺杂未改变晶体的共生结构,样品剩余极化(2P_r)在掺杂量x=0.50时取得极大值,为32.3×10~(-2) C·m~(-2),比未掺杂时增加了70%,而矫顽场则从未掺杂时的90.5×10~5 V·m~(-1)上升为103×10~5 V·m~(-1).Nd掺杂使得样品的居里温度(t_C)有所下降,x=0.50时的t_C为538℃.掺杂使得样品的压电性能明显改善,压电系数d_(33)从未掺杂时的6 pC·N~(-1)增加到x=0.50时的11 pC·N~(-1). 相似文献
2.
对Sr2Bi4-x/3Ti5-xNbxO18(x=0,0.003,0.018,0.048,0.096)陶瓷样品的铁电和介电性能进行了测量.结果表明,Sr2Bi4Ti5O18样品的剩余极化2Pr为0.22 C·m-2,少量Nb掺杂可使样品的2Pr有明显提高,当x=0.018时,2Pr达到最大为0.34 C·m-2.介电损耗随温度的变化关系曲线上存在P1,P2,P3 3个介电损耗峰,分别在70,230,290℃附近.低温部分的2个损耗峰具有介电弛豫的特征,其弛豫机制被认为是点缺陷与畴界之间的相互作用.通过激活参数的计算以及损耗峰随不同Bi过量的变化,可以确定P1,P2峰的弛豫机制与Sr,Ti空位有关.随着Nb掺杂量的增加,P1,P2峰逐渐降低,表明Nb掺杂降低了样品中缺陷的浓度,从而使得样品的2Pr明显提高. 相似文献
3.
用传统的固相烧结工艺,制备了铌掺杂SrBi_4Ti_4O_(15)(SBTi)铁电陶瓷SrBi4-x/3Ti4-xNbxO15(SBTN-x),Nb掺杂量x=0.00,0.003,0.012,0.03和0.06.X射线衍射的结果表明,所有样品均为单一的层状钙钛矿结构相,Nb掺杂未改变SBTi的晶体结构.铁电测量结果表明,Nb掺杂使SBTi的铁电性能得到较大改善.随掺杂量x的增加,样品的剩余极化(2Pr)呈现出先增大,后减小的规律.在x=0.03时,2Pr达到最大值24.7μC/cm2,而SrBi4Ti4O15的2Pr仅为15.8μC/cm2,掺杂使2Pr提高近60%.同时,样品的矫顽场几乎不随掺杂量的改变而变化.掺杂后,样品的居里温度变化很小,表明Nb对SrBi_4Ti_4O_(15)的B位掺杂基本未影响材料的热稳定性能. 相似文献
4.
层状钙钛矿铁电体材料B i4-xN dxT i3O12(x=0.0~0.9)陶瓷样品适量N d掺杂可提高B i4T i3O12(B IT)的铁电性能.当掺杂量为0.6时,样品的剩余极化达到最大值.样品的相变温度(tc)随掺杂量的增加而降低,当掺杂量大于0.6时,tc下降速率增大.随着N d含量的增加(x>0.6),样品的弛豫程度明显提高.N d掺杂降低了样品的氧空位浓度,提高了B IT样品的铁电性能. 相似文献
5.
采用传统固相烧结工艺,制备了掺杂量分别为0.000~1.000,0.000~0.096的La,V掺杂Sr2Bi4Ti5O18铁电陶瓷.X射线衍射结果显示,La,V对Sr2Bi4Ti5O18的A,B位掺杂都未影响材料的晶体结构.La掺杂使得材料的剩余极化2Pr逐渐降低,而V掺杂可以显著地提高2Pr.A位掺杂导致材料的居里温度明显下降,而V取代B位Ti4 离子不影响材料的居里温度.微观照片显示,Sr2Bi4Ti5O18样品由呈四方状的晶粒组成,晶粒较为均匀.La掺杂未改变晶粒的形状,而V掺杂使得晶粒呈现扁平状,且晶粒尺寸明显增大. 相似文献
6.
采用固相烧结工艺制备了Sr2Bi4-xDyxTi5O18(x=0,0.25)陶瓷样品,用X射线衍射对其微结构进行了分析,并测量了样品的铁电、介电性能.Sr2Bi.75Dy0.25Ti5O18样品的X射线谱上出现SrTiO3衍射峰,其介电损耗随温度的关系曲线上存在明显的弛豫损耗峰P1,该损耗峰的激活能为0.4eV,可以确定该峰是由氧空位引起的.结果表明:离子半径较小的Dy3 很难进入类钙钛矿层,造成样品中大量的A位空位,使得氧空位浓度增加.氧空位的存在会导致很强的畴钉扎,从而极化降低。 相似文献
7.
以Bi_2O_3、Fe_2O_3、TiO_2为原料,采用传统固相反应法,分别在930℃、950℃、1 000℃、1 050℃下烧结制备Bi_6Fe_2Ti_3O_(18)陶瓷.X线衍射结果表明,在930℃、950℃和1 000℃烧结的陶瓷均为单一的层状钙钛矿Bi_6Fe_2Ti_3O_(18)相,而在较高温度1 050℃下烧结的陶瓷出现了杂相.扫描电镜观察显示,950℃烧结得到的陶瓷晶粒尺寸均一,气孔率较低.电滞回线测试显示,950℃烧结的陶瓷耐压性最好,剩余极化随外加电场的增加逐渐增大,当测试电压为240 kV/cm时,剩余极化强度(2P_r)最大值为21μC/cm~2.压电力显微镜测量显示该陶瓷具有良好的铁电极化翻转特性. 相似文献
8.
用溶胶-凝胶法制备出了SrBi4-xLaxTi4O15陶瓷,其中x=0.00,0.05,0.10,0.20,0.30。利用XRD,SEM,TH2816型宽频LCR数字电桥等手段研究了陶瓷的显微结构及电学性能。研究结果表明:本工艺技术制备的陶瓷具有层状钙钛矿结构;镧元素的掺入有助于材料的择优取向,掺杂样品的电学性能优于未掺杂样品;且掺量对样品的电学性能有很大影响,当x=0.10时,介电常数、压电常数和剩余极化(Pr)分别为:375(常温下、1 kHz)、4.8 pC.N-1和5.6μC.cm-2,都较其他掺杂量样品的高。 相似文献
9.
研究BaZrxTi1-xO3 (x=0,0.1,0.2,0.3)陶瓷中掺杂0.1%(按物质的量计算,下同)Y2O3对铁电-顺电相变温度的影响.发现0.1%Y2O3的掺杂使BaTiO3的铁电-顺电相变的居里温度向高温偏移了约20℃,不同Zr含量的样品也发生了一定程度的高温偏移.在-40℃到140℃的测量温度范围内介电频率弥散现象极弱,峰值介电常数可以达到8000,损耗峰值为0.05以下.随Zr含量的增加,损耗峰快速移向低温.与文献报道的结果比较,证实Y以A位替代Ba为主. 相似文献
10.
采用传统固相反应法制备了Bi3.15Nd0.85TiO12(BNdT)陶瓷.在1 100℃烧结的BNdT陶瓷呈层状钙钛矿结构,致密,晶粒呈扁平状.该陶瓷表现出良好的铁电介电特性,其电滞回线对称,在210 kV/cm测试电场下,剩余极化2Pr和矫顽场Ec分别为45 μC/cm2和67.6 kV/cm.在室温f=100 kHz时,εr=221,tgδ=0.0064.变温介电测试表明居里温度在408℃左右,这一较宽的相变峰,可能是由于氧空位产生的介电弛豫引起的.漏电流测试表明,BNdT陶瓷在低于230 kV/cm电场下,漏电流密度保持在7.5×10-7 A/cm2以下,在低于75 kV/cm电场下,该陶瓷呈现肖特基(Schottky)导电行为. 相似文献
11.
采用化学共沉淀法制备了掺钕钛酸铋陶瓷粉料,对其相组成和形貌进行研究,进而制备块体陶瓷,对其电学性能和疲劳特性进行分析.结果表明:粉料经550℃烧结后开始结晶,随烧结温度的进一步提高,结晶逐步完善而形成单相层状钙钛矿结构.块体材料的2Pr和Ee值分别为12.56μC/cm^2和29.9V/cm.经过10^11次读/写循环后BNT的Pr值基本上没有下降,说明材料具有良好的抗疲劳特性。 相似文献
12.
采用调制金属有机物热分解法(MOD),Bi4Ti3O12-SrBi4Ti4O15(BIT-SBTi)薄膜及添加La元素的薄膜被沉积在Pt/Si村底上.沉积的薄膜在氧气中退火晶化,退火温度为550-700℃.X射线衍射(XRD)和拉曼谱散射被用于分析晶化薄膜的微结构,铁电及介电性能测量采用RT66A测试系统.与未添加镧元素的薄膜比较,在同样的晶化温度下,加添镧的薄膜,其XRD衍射峰少且宽.增加La的含量会导致衍射峰的进一步宽化.然而,XRD和拉曼谱的研究显示,这种添加行为并不会引起明显的晶格畸变.这表明La的加入仅仅是取代恶劣晶体中的Bi或Sr原子,铁电回线测量表明添加与未添加镧元素的薄膜有着相似的矫顽场Ec和剩余极化值sPx.然而,与BIT-SBTi薄膜相比,La75BIT-SBTi薄膜的开关时间更短且与厚度无关,BIT-SBT薄膜的翻转极化值在厚度超过210mm后逐渐减小,而La75BlT-SBTi薄膜的翻转极化值在280nm厚度时达到最大,同样厚度的薄膜,增加外场能会同时增加开关时间和翻转极化值, 相似文献
13.
采用固相法制备CaCu3Ti4O12陶瓷,并对其烧结温度、晶相结构、致密化过程、显微结构及介电性能与频率的关系进行了研究。研究发现,不同烧结温度下,1000℃制备的CaCu3Ti4O12陶瓷为立方钙钛矿结构且结晶完好,晶格常数为7.394?。CaCu3Ti4O12陶瓷具有良好的显微形貌,结构致密,平均晶粒尺寸在3-5μm。CaCu3Ti4O12陶瓷在10kHz处的介电常量高达7200,介电损耗约为0.06。 相似文献
14.
采用多次球磨、预合成、真空干燥的工艺,制备了(0014)择优取向的Bi4Ti3O12(BTO)陶瓷样品。样品的c取向方向与样品成型时所加压力的方向基本一致;随烧结时间增加,样品的c取向率增大,烧结时间为16h的陶瓷样品的取向率达到0.96;测量了样品与轴线平行和垂直2个方向的电学性能,得到了各向异性的测量结果,为深入研究BTO的微观结构提供了一定条件。 相似文献