共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches 总被引:7,自引:0,他引:7
Selected actions of neurotransmitters and hormones on ion channels in nerve and muscle cells are now thought to be mediated by cyclic AMP-dependent protein phosphorylation. Although the cyclic AMP-dependent protein kinase (cAMP-PK) affects the cellular properties of several neurones, its mode of action at the single-channel level has not been characterized. In addition, little is known about the identity or subcellular localization of the phosphoproteins that control channel activity and, in particular, whether the critical substrate proteins are cytoplasmic or membrane-associated. In Aplysia sensory neurones, serotonin produces a slow modulatory synaptic potential mediated by cAMP-PK that contributes to presynaptic facilitation and behavioural sensitization. Previously, we have found that serotonin acts on cell-attached membrane patches to produce prolonged all-or-none closures of a specific class of K+ channels (S channels) whose gating is weakly dependent on voltage and independent of intracellular calcium. We demonstrate here that in cell-free membrane patches from Aplysia sensory neurones, the purified catalytic subunit of cAMP-PK produces all-or-none closures of the S channel, simulating most (but not all) aspects of the action of serotonin on cell-attached patches. This result suggests that protein kinase acts on the internal surface of the membrane to phosphorylate either the channel itself or a membrane-associated protein that regulates channel activity. 相似文献
3.
Nerve axons in the central and peripheral nervous system are normally surrounded by satellite cells. These cells, known as Schwann cells in the peripheral nervous system, interact with axons to form a myelin sheath, so allowing nerve impulses to proceed at high speed. Schwann cells are thought to differ from neurones in their membrane properties in one important aspect: they lack excitability. Using the patch-clamp technique we have now measured directly the ionic currents across the membrane of single Schwann cells cultured from newborn rabbits. Surprisingly, we found that these Schwann cells possess voltage-gated sodium and potassium channels that are similar to those present in neuronal membranes. 相似文献
4.
The sarcoplasmic reticulum membrane (SR) of skeletal muscle contains cation-selective channels which have been detected by isotope fluxes in fragmented SR vesicles, fluorimetric dyes and direct incorporation of SR vesicles to planar phospholipid bilayers. SR channels incorporated in bilayers have a single open-state conductance of 140 pS in 0.1 MK+ (refs 4,5). We have previously reported blockade of the SR channel by Cs+, a low-affinity blocker with a zero-voltage dissociation constant of 40 mM (ref. 6). We showed that increasing Cs+ concentrations reduced the open-channel conductance, increased the mean open time and conferred voltage dependence on the open-state conductance. Here we report on the blockade induced by the cholinergic drugs decamethonium and hexamethonium on the SR channel. Although blockade by hexamethonium is similar to that of Cs+, decamethonium blocks with a much higher affinity and induces flickering events which are probably due to the interaction of single drug molecules with the open state. 相似文献
5.
It is known that glucose-induced depolarization of pancreatic B-cells is due to reduced membrane K+-permeability and is coupled to an increase in the rate of glycolysis, but there has been no direct evidence linking specific metabolic processes or products to the closing of membrane K+ channels. During patch-clamp studies of proton inhibition of Ca2+-activated K+ channels [GK(Ca)] in B-cells, we identified a second K+-selective channel which is rapidly and reversibly inhibited by ATP applied to the cytoplasmic surface of the membrane. This channel is spontaneously active in excised patches and frequently coexists with GK(Ca) channels yet is insensitive to membrane potential and to intracellular free Ca2+ and pH. Blocking of the channel is ATP-specific and appears not to require metabolism of the ATP. This ATP-sensitive K+ channel [GK(ATP)] may be a link between metabolism and membrane K+-permeability in pancreatic B-cells. 相似文献
6.
A developmental change in the ionic basis of the inward current of action potentials has been observed in many excitable cells. In cultured spinal neurones of Xenopus, the timing of the development of the action parallels that seen in vivo. In vitro, as in vivo, neurones initially produce action potentials of long duration which are principally Ca-dependent; after 1 day of development the impulse is brief and primarily Na-dependent. At both ages, however, both inward components are present and the mechanism underlying shortening of the action potential is unknown. One possibility is that the outward currents change during development. Using the patch-clamp technique, we have recorded single K+-channel currents in membrane patches isolated from the cell bodies of cultured embryonic neurones. The unitary conductance of one class of K+ channels was approximately 155 pS and depolarization increased the probability of a channel being open. Neither conductance nor voltage dependence seemed to change with time in culture; in contrast, the Ca2+-sensitivity of this K+ channel increased. In younger neurones, Ca2+-sensitivity was greatly reduced or absent, whereas in more mature neurones, the activity of this channel was Ca-dependent. Such a change could account for the shortening of the action potential duration by increasing the relative contribution of outward currents. 相似文献
7.
We have postulated that an excitatory postsynaptic potential (e.p.s.p.) may open voltage-sensitive K+ ('M') channels, in an appropriate depolarizing range, and that this could alter the e.p.s.p. waveform. Consequently, the fast e.p.s.p. in neurones of sympathetic ganglia, elicited by a nicotinic action of acetylcholine (ACh), could be followed by a hyperpolarization, produced by the opening of M channels during the depolarizing e.p.s.p. and their subsequent slow closure (time constant-150 mg). This introduces the concept that transmitter-induced p.s.ps may trigger voltage-sensitive conductances other than those initiating action potentials, and that in the present case this could produce a true post-e.p.s.p. hyperpolarization. (Some hyperpolarizations other than inhibitory postsynaptic potentials (i.p.s.ps) have been reported to follow e.p.s.ps.) We show here that this is so. 相似文献
8.
9.
Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons 总被引:14,自引:0,他引:14
N W Davies 《Nature》1990,343(6256):375-377
Since their discovery in cardiac muscle, ATP-sensitive K+(KATP) channels have been identified in pancreatic beta-cells, skeletal muscle, smooth muscle and central neurons. The activity of KATP channels is inhibited by the presence of cytosolic ATP. Their wide distribution indicates that they could have important physiological roles that may vary between tissues. In muscle cells the role of K+ channels is to control membrane excitability and the duration of the action potential. In anoxic cardiac ventricular muscle KATP channels are believed to be responsible for shortening the action potential, and it has been proposed that a fall in ATP concentration during metabolic exhaustion increases the activity of KATP channels in skeletal muscle, which may reduce excitability. But the intracellular concentration of ATP in muscle is buffered by creatine phosphate to 5-10 mM, and changes little, even during sustained activity. This concentration is much higher than the intracellular ATP concentration required to half block the KATP-channel current in either cardiac muscle (0.1 mM) or skeletal muscle (0.14 mM), indicating that the open-state probability of KATP channels is normally very low in intact muscle. So it is likely that some additional means of regulating the activity of KATP channels exists, such as the binding of nucleotides other than ATP. Here I present evidence that a decrease in intracellular pH (pHi) markedly reduces the inhibitory effect of ATP on these channels in excised patches from frog skeletal muscle. Because sustained muscular activity can decrease pHi by almost 1 unit in the range at which KATP channels are most sensitive to pHi, it is likely that the activity of these channels in skeletal muscle is regulated by intracellular protons under physiological conditions. 相似文献
10.
以高温凝结水的净化为应用背景,采用孔径为4 nm的陶瓷膜去除水中微量Fe3+。考察Fe3+浓度、pH及操作参数等对陶瓷膜分离性能的影响。结果表明:随着Fe3+浓度增大,陶瓷膜对Fe3+的去除率减小;当Fe3+质量浓度小于50 mg/L时,陶瓷膜对Fe3+的去除率大于98%,操作条件如温度和膜面流速(CFV)的提高均有利于提高陶瓷膜对Fe3+的截留率;温度升高有利于提高膜过滤通量,操作压力对通量的拐点为0.2 MPa,膜面流速的拐点在3 m/s左右;pH对Fe3+的去除率影响显著,主要由于pH影响了Fe3+在水中的化学构成。 相似文献
11.
ATP-sensitive K+ channel in the mitochondrial inner membrane. 总被引:45,自引:0,他引:45
Mitochondria take up and extrude various inorganic and organic ions, as well as larger substances such as proteins. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of ion channels in the 5-1,000 pS range in the outer and inner membranes. These pores are not, however, selective for particular ions. Here we use fused giant mitoplasts prepared from rat liver mitochondria to identify a small conductance channel highly selective for K+ in the inner mitochondrial membrane. This channel can be reversibly inactivated by ATP applied to the matrix side under inside-out patch configuration; it is also inhibited by 4-aminopyridine and by glybenclamide. The slope conductance of the unitary currents measured at negative membrane potentials was 9.7 +/- 1.0 pS (mean +/- s.d., n = 6) when the pipette solution contained 100 mM K+ and the bathing solution 33.3 mM K+. Our results indicate that mitochondria depolarize by generating a K+ conductance when ATP in the matrix is deficient. 相似文献
12.
Nichols CG 《Nature》2006,440(7083):470-476
In responding to cytoplasmic nucleotide levels, ATP-sensitive potassium (K(ATP)) channel activity provides a unique link between cellular energetics and electrical excitability. Over the past ten years, a steady drumbeat of crystallographic and electrophysiological studies has led to detailed structural and kinetic models that define the molecular basis of channel activity. In parallel, the uncovering of disease-causing mutations of K(ATP) has led to an explanation of the molecular basis of disease and, in turn, to a better understanding of the structural basis of channel function. 相似文献
13.
Neurotransmitters modulate the activity of ion channels through a variety of second messengers, including cyclic AMP, cyclic GMP and the products of phosphatidylinositol breakdown. Little is known about how different transmitters acting through different second-messenger systems interact within a cell to regulate single ion channels. We here describe the reciprocal actions of serotonin and the molluscan neuropeptide, FMRFamide, on individual K+ channels in Aplysia sensory neurons. In these cells, serotonin causes prolonged all-or-none closure of a class of background conductance K+ channels (the S channels) through cAMP-dependent protein phosphorylation. Using single-channel recording, we have found that FMRFamide produces two actions on the S channels; it increases the probability of opening of the S channels via a cAMP-independent second-messenger system and it reverses the closures of S channels produced by serotonin or cAMP. 相似文献
14.
Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells 总被引:1,自引:0,他引:1
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion. 相似文献
15.
Voltage-gated ion channels open and close in response to voltage changes across electrically excitable cell membranes. Voltage-gated potassium (Kv) channels are homotetramers with each subunit constructed from six transmembrane segments, S1-S6 (ref. 2). The voltage-sensing domain (segments S1-S4) contains charged arginine residues on S4 that move across the membrane electric field, modulating channel open probability. Understanding the physical movements of this voltage sensor is of fundamental importance and is the subject of controversy. Recently, the crystal structure of the KvAP channel motivated an unconventional 'paddle model' of S4 charge movement, indicating that the segments S3b and S4 might move as a unit through the lipid bilayer with a large (15-20-A) transmembrane displacement. Here we show that the voltage-sensor segments do not undergo significant transmembrane translation. We tested the movement of these segments in functional Shaker K+ channels by using luminescence resonance energy transfer to measure distances between the voltage sensors and a pore-bound scorpion toxin. Our results are consistent with a 2-A vertical displacement of S4, not the large excursion predicted by the paddle model. This small movement supports an alternative model in which the protein shapes the electric field profile, focusing it across a narrow region of S4 (ref. 6). 相似文献
16.
Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target. 相似文献
17.
Huiyu Li Dongmei Guo Fang Zheng Kaiwei Liang Wenying Li Shenghua Jie 《武汉大学学报:自然科学英文版》2014,19(2):178-184
Human ether-a-go-go-related gene (HERG1) K^+ channels are overexpressed in leukemia, which contributes to neoangiogene- sis. The purpose of this study was to investigate the role of HERG1 K^+ channels on leukemia angiogenesis. We cultured human umbili- cal vein endothelial cells (HUVECs) in conditioned media, which were derived from leukemic cells with or without E-4031, a HERG1 K^+ channel special inhibitor. The HUVECs proliferation was mea- sured using CCK-8 assay and migration by a Trans-well. Endothelial tube formation was investigated using Matrigel. Vascular endothelial growth factor (VEGF) levels were tested by ELISA and VEGF mRNA expression using RT-PCR. Our results revealed that blocking HERG1 K^+ channels could inhibit leukemia-induced HUVECs pro- liferation, migration, and tube formation in vitro. The results sug- gested that HERG1 K~ channels could increase leukemia angio- genesis. Furthermore, blockage of HERG1 K^+ channels could also decrease leukemic cells secreting VEGF and expressing VEGF mRNA. HERG1 K^+ channels have a promoting effect on leukemia angiogenesis, and the possible mechanism may be that HERG1 K^+ channels enhance VEGF expression. Thus, HERG1 K4 channel is a potential target of antiangiogenesis in leukemia. 相似文献
18.
We have identified a serotonin-sensitive K+ channel with novel properties. The channel is active at the testing potential; its gating is moderately affected by membrane potential and is not dependent on the activity of intracellular calcium ions. Application of serotonin to the cell body or intracellular injection of cyclic AMP causes prolonged and complete closure of the channel, thereby reducing the effective number of active channels in the membrane. The closure of the channel can account for the increases in the duration of the action potential, Ca2+ influx, and transmitter release which underlie behavioural sensitization, a simple form of learning. 相似文献
19.
Beta-adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres 总被引:1,自引:0,他引:1
D C Gadsby 《Nature》1983,306(5944):691-693
Hormonal modulation of the ionic conductance of cell membranes is a topic of considerable current interest; it has a major role, for example, in the improved performance of the vertebrate heart elicited by sympathetic nerve stimulation or by circulating catecholamines, an effect involving enhanced calcium influx. beta-Agonist catecholamines also abbreviate the action potential of cardiac Purkinje fibres, and increase the resting potential in a variety of cells, including cardiac cells, a hyperpolarization usually attributed to stimulation of the electrogenic Na+/K+ pump. We show here that nanomolar concentrations of beta-catecholamines cause hyperpolarization of cardiac Purkinje fibres, not by increasing Na+/K+ pump current, but by increasing resting membrane K+ conductance. The hyperpolarization and shortening of the action potential should increase availability of Na+ channels and reduce the refractory period, effects tending to safeguard impulse propagation through the ventricular conducting system despite the increased heart rate caused by beta-catecholamine action on the sinus node pacemaker. 相似文献
20.
Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle 总被引:26,自引:0,他引:26
Action potentials in many excitable cells are followed by a prolonged afterhyperpolarization that modulates repetitive firing. Although it is established that the afterhyperpolarization is produced by Ca-activated K+ currents, the basis of these currents is not known. The large conductance (250 pS) Ca-activated K+ channel (BK channel) is not a major contributor to the afterhyperpolarization in non-innervated skeletal muscle and some nerve cells, because apamin, a neurotoxic component of bee venom, abolishes the afterhyperpolarization but does not block BK channels, and 5 mM extracellular tetraethylammonium ion (TEA) blocks BK channels but does not reduce the afterhyperpolarization. We now report single-channel currents from small conductance (10-14 pS) Ca-activated K+ channels (SK channels) with the necessary properties to account for the afterhyperpolarization. SK channels are blocked by apamin but not by 5 mM external TEA (TEAo). They are also highly Ca-sensitive at the negative membrane potentials associated with the afterhyperpolarization. 相似文献