首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human footprint in the carbon cycle of temperate and boreal forests   总被引:7,自引:0,他引:7  
Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).  相似文献   

2.
de Vries W  Solberg S  Dobbertin M  Sterba H  Laubhahn D  Reinds GJ  Nabuurs GJ  Gundersen P  Sutton MA 《Nature》2008,451(7180):E1-3; discussion E3-4
Magnani et al. present a very strong correlation between mean lifetime net ecosystem production (NEP, defined as the net rate of carbon (C) accumulation in ecosystems) and wet nitrogen (N) deposition. For their data in the range 4.9-9.8 kg N ha(-1) yr(-1), on which the correlation largely depends, the response is approximately 725 kg C per kg N in wet deposition. According to the authors, the maximum N wet deposition level of 9.8 kg N ha(-1) yr(-1) is equivalent to a total deposition of 15 kg N ha(-1 )yr(-1), implying a net sequestration near 470 kg C per kg N of total deposition. We question the ecological plausibility of the relationship and show, from a multi-factor analysis of European forest measurements, how interactions with site productivity and environment imply a much smaller NEP response to N deposition.  相似文献   

3.
Old-growth forests as global carbon sinks   总被引:15,自引:0,他引:15  
Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.  相似文献   

4.
【目的】凋落物是森林净生产量的重要组分,探讨森林凋落物生产及其养分归还量对氮磷添加的响应,为亚热带常绿阔叶林可持续经营提供科学依据。【方法】选择安徽池州亚热带常绿阔叶林,包括甜槠(Castanopsis eyrei)老龄林和苦槠(C. sclerophylla)中龄林,开展氮磷添加试验,设置3个处理,即氮[N 100 kg /(hm2·a)]、氮+磷[N 100 kg /(hm2·a) +P 50 kg /(hm2·a)]和对照(CK,无氮磷添加)。采用凋落物收集框法,对林分凋落物生产量及其养分归还量进行了为期1年的监测(2017年5月至2018年4月)。【结果】N+P处理下,苦槠林和甜槠林总凋落物量最高值分别为9.502、7.120 t/(hm2·a);其次是N处理,分别为8.393、7.041 t/(hm2·a);CK林分分别为7.724和6.697 t/(hm2·a),氮磷添加提高了总凋落物量,但不同处理间没有显著差异。在N处理和对照条件下,两林分凋落物各组分所占比例由大到小顺序均为:落叶、落枝、碎屑、落花落果。但在N+P处理的苦槠林中由大到小依次为:落叶、落枝、落花落果、碎屑。N处理下,苦槠林和甜槠林凋落物年均氮含量分别为14.199和13.648 g/kg,N+P处理分别为13.863和13.650 g/kg,CK林分分别为13.384和13.094 g/kg。各处理下苦槠林和甜槠林凋落物年均磷含量由大到小顺序为N+P、CK、N处理。两林分凋落物的氮磷含量和年归还量不同处理间差异均不显著;不同处理间的苦槠林和甜槠林凋落物的氮磷比均无明显差异。【结论】氮沉降提高了苦槠和甜槠林凋落物产量,磷添加具有一定的增效作用,表明磷添加缓解了氮沉降引起的磷限制作用。  相似文献   

5.
Steven S Perakis  Lars O Hedin 《Nature》2002,415(6870):416-419
Conceptual and numerical models of nitrogen cycling in temperate forests assume that nitrogen is lost from these ecosystems predominantly by way of inorganic forms, such as nitrate and ammonium ions. Of these, nitrate is thought to be particularly mobile, being responsible for nitrogen loss to deep soil and stream waters. But human activities-such as fossil fuel combustion, fertilizer production and land-use change-have substantially altered the nitrogen cycle over large regions, making it difficult to separate natural aspects of nitrogen cycling from those induced by human perturbations. Here we report stream chemistry data from 100 unpolluted primary forests in temperate South America. Although the sites exhibit a broad range of environmental factors that influence ecosystem nutrient cycles (such as climate, parent material, time of ecosystem development, topography and biotic diversity), we observed a remarkably consistent pattern of nitrogen loss across all forests. In contrast to findings from forests in polluted regions, streamwater nitrate concentrations are exceedingly low, such that nitrate to ammonium ratios were less than unity, and dissolved organic nitrogen is responsible for the majority of nitrogen losses from these forests. We therefore suggest that organic nitrogen losses should be considered in models of forest nutrient cycling, which could help to explain observations of nutrient limitation in temperate forest ecosystems.  相似文献   

6.
A unifying framework for dinitrogen fixation in the terrestrial biosphere   总被引:8,自引:0,他引:8  
Houlton BZ  Wang YP  Vitousek PM  Field CB 《Nature》2008,454(7202):327-330
Dinitrogen (N(2)) fixation is widely recognized as an important process in controlling ecosystem responses to global environmental change, both today and in the past; however, significant discrepancies exist between theory and observations of patterns of N(2) fixation across major sectors of the land biosphere. A question remains as to why symbiotic N(2)-fixing plants are more abundant in vast areas of the tropics than in many of the mature forests that seem to be nitrogen-limited in the temperate and boreal zones. Here we present a unifying framework for terrestrial N(2) fixation that can explain the geographic occurrence of N(2) fixers across diverse biomes and at the global scale. By examining trade-offs inherent in plant carbon, nitrogen and phosphorus capture, we find a clear advantage to symbiotic N(2) fixers in phosphorus-limited tropical savannas and lowland tropical forests. The ability of N(2) fixers to invest nitrogen into phosphorus acquisition seems vital to sustained N(2) fixation in phosphorus-limited tropical ecosystems. In contrast, modern-day temperatures seem to constrain N(2) fixation rates and N(2)-fixing species from mature forests in the high latitudes. We propose that an analysis that couples biogeochemical cycling and biophysical mechanisms is sufficient to explain the principal geographical patterns of symbiotic N(2) fixation on land, thus providing a basis for predicting the response of nutrient-limited ecosystems to climate change and increasing atmospheric CO(2).  相似文献   

7.
Respiration as the main determinant of carbon balance in European forests   总被引:106,自引:0,他引:106  
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha(-1) yr(-1), with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.  相似文献   

8.
大气氮沉降对森林生态系统影响的研究进展   总被引:6,自引:0,他引:6  
近几十年来,由于化石燃料和农牧业含氮化肥饲料的广泛使用,全球大气氮沉降量明显增加,一些地区已经达到饱和甚至超过了生态系统所能承受的临界负荷.过量氮沉降会对森林生态系统产生负效应.本文概述了全球氮沉降的现状,介绍了氮沉降增加对森林土壤和植物的影响机制,从而说明了我国开展氮沉降研究的必要性和紧迫性.  相似文献   

9.
选取黑龙江五营温带森林和福建武夷山亚热带森林两个站点, 通过120天室内培养实验, 探讨氮磷(NH4NO3和NaH2PO4)添加对两种森林表层土壤(0~20 cm)碳氮矿化的影响。结果表明, 氮添加通过降低土壤微生物的生物量及其碳氮比来降低亚热带森林的土壤碳矿化, 但对温带森林的土壤碳矿化没有显著影响; 磷添加对两种森林的土壤碳矿化均没有显著影响。磷添加显著地增加温带森林的土壤净氮矿化, 氮添加显著地降低温带森林的土壤净氮矿化, 氮添加和磷添加均对亚热带森林的土壤净氮矿化没有显著影响。总体而言, 可能由于养分可利用性和土壤性质的区别, 温带森林和亚热带森林土壤碳氮矿化对氮磷添加的响应存在区别。  相似文献   

10.
大气氮沉降是影响森林生态系统的新生态因子之一,过量氮沉降将改变参与森林生态系统物质转化和养分循环的土壤微生物.作者综述了国内外模拟氮沉降对森林土壤微生物生物量、群落结构和多样性、微生物活性和酶活性、底物利用能力以及功能基因的影响研究现状.结果表明:(1)整体来看,氮沉降对森林土壤微生物生物量产生负面影响的报道较多;(2)氮沉降改变了森林土壤微生物群落的构成和丰富性;(3)氮沉降短期内促进森林土壤呼吸速率,长期氮输入会抑制土壤呼吸速率;(4)氮沉降改变了参与凋落物分解相关土壤酶的活性;(5)氮沉降降低了土壤微生物代谢复杂有机质的代谢能力;(6)氮沉降增加和降低了某些微生物功能基因的丰度.此外,作者还探讨了氮沉降对森林土壤微生物研究存在的问题和未来研究的重点.  相似文献   

11.
Clark CM  Tilman D 《Nature》2008,451(7179):712-715
Rates of atmospheric deposition of biologically active nitrogen (N) are two to seven times the pre-industrial rates in many developed nations because of combustion of fossil fuels and agricultural fertilization. They are expected to increase similarly over the next 50 years in industrializing nations of Asia and South America. Although the environmental impacts of high rates of nitrogen addition have been well studied, this is not so for the lower, chronic rates that characterize much of the globe. Here we present results of the first multi-decadal experiment to examine the impacts of chronic, experimental nitrogen addition as low as 10 kg N ha(-1) yr(-1) above ambient atmospheric nitrogen deposition (6 kg N ha(-1) yr(-1) at our site). This total input rate is comparable to terrestrial nitrogen deposition in many industrialized nations. We found that this chronic low-level nitrogen addition rate reduced plant species numbers by 17% relative to controls receiving ambient N deposition. Moreover, species numbers were reduced more per unit of added nitrogen at lower addition rates, suggesting that chronic but low-level nitrogen deposition may have a greater impact on diversity than previously thought. A second experiment showed that a decade after cessation of nitrogen addition, relative plant species number, although not species abundances, had recovered, demonstrating that some effects of nitrogen addition are reversible.  相似文献   

12.
Fulweiler RW  Nixon SW  Buckley BA  Granger SL 《Nature》2007,448(7150):180-182
The flux of nitrogen from land and atmosphere to estuaries and the coastal ocean has increased substantially in recent decades. The observed increase in nitrogen loading is caused by population growth, urbanization, expanding water and sewer infrastructure, fossil fuel combustion and synthetic fertilizer consumption. Most of the nitrogen is removed by denitrification in the sediments of estuaries and the continental shelf, leading to a reduction in both cultural eutrophication and nitrogen pollution of the open ocean. Nitrogen fixation, however, is thought to be a negligible process in sub-tidal heterotrophic marine systems. Here we report sediment core data from Narragansett Bay, USA, which demonstrate that heterotrophic marine sediments can switch from being a net sink to being a net source of nitrogen. Mesocosm and core incubation experiments, together with a historic data set of mean annual chlorophyll production, support the idea that a climate-induced decrease in primary production has led to a decrease in organic matter deposition to the benthos and the observed reversal of the net sediment nitrogen flux. Our results suggest that some estuaries may no longer remove nitrogen from the water column. Instead, nitrogen could be exported to the continental shelf and the open ocean and could shift the effect of anthropogenic nitrogen loading beyond the immediate coastal zone.  相似文献   

13.
Quantifying nitrogen-fixation in feather moss carpets of boreal forests   总被引:21,自引:0,他引:21  
DeLuca TH  Zackrisson O  Nilsson MC  Sellstedt A 《Nature》2002,419(6910):917-920
Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.  相似文献   

14.
Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.  相似文献   

15.
Convergence across biomes to a common rain-use efficiency   总被引:7,自引:0,他引:7  
Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUE(max)) that is typical of arid ecosystems. RUE(max) was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.  相似文献   

16.
In oxygen-depleted zones of the open ocean, and in anoxic basins and fjords, denitrification (the bacterial reduction of nitrate to give N2) is recognized as the only significant process converting fixed nitrogen to gaseous N2. Primary production in the oceans is often limited by the availability of fixed nitrogen such as ammonium or nitrate, and nitrogen-removal processes consequently affect both ecosystem function and global biogeochemical cycles. It was recently discovered that the anaerobic oxidation of ammonium with nitrite--the 'anammox' reaction, performed by bacteria--was responsible for a significant fraction of N2 production in some marine sediments. Here we show that this reaction is also important in the anoxic waters of Golfo Dulce, a 200-m-deep coastal bay in Costa Rica, where it accounts for 19-35% of the total N2 formation in the water column. The water-column chemistry in Golfo Dulce is very similar to that in oxygen-depleted zones of the oceans--in which one-half to one-third of the global nitrogen removal is believed to occur. We therefore expect the anammox reaction to be a globally significant sink for oceanic nitrogen.  相似文献   

17.
Addiscott T  Brookes P 《Nature》2002,418(6898):604; discussion 604
Nitrogen is lost as dissolved organic compounds in stream waters from unpolluted South American forests, but it is lost mainly as inorganic nitrate in streams flowing from North American forests that suffer nitrogen deposition from the atmosphere. From this it has been inferred that the standard thinking about how nature deals with nitrogen in soils and waters needs to be re-evaluated and that the conventional wisdom of how nitrogen is absorbed and released by plants must be wrong. We disagree, however, on the grounds that there are other, more likely interpretations of the new results.  相似文献   

18.
【目的】阐明模拟氮(N)磷(P)沉降和凋落物处理对两种林型红松(Pinus koraiensis)林土壤有机碳(SOC)组分的影响,为该地区红松林的合理施肥提供参考。【方法】以黑龙江省伊春市带岭区凉水国家级自然保护区红松人工林与阔叶红松林为对象,每个林型设置3块20 m×30 m样地,每块样地间隔20 m,每块样地内布设12个样方,共计72个样方。每个样方实施两种处理:(1)凋落物处理:2017年10月进行该处理的去除(R)、添加(A)和原状(CK1)3个水平的试验,每个水平设定3个重复;(2)模拟氮磷沉降处理:2018年与2019年的5—10月,每月进行1次该处理的试验,分别使用(NH4)2SO4和(NH4)2HPO4作为氮源和磷源配置成不同质量浓度的液体肥,施肥量设置低剂量(L,N、P添加量均为5 g/m2)、中剂量(M,N添加量为15 g/m2,P添加量为10 g/m2)、高剂量(H,...  相似文献   

19.
Stability of alpine meadow ecosystem on the Qinghai- Tibetan Plateau   总被引:11,自引:0,他引:11  
THE QINGHAI-TIBETAN PLATEAU PLAYS AN IMPORTANT ROLE IN THE ATMOSPHERIC CIRCULATION AND REGIONAL MONSOON CLIMATE, WHICH HAS GREAT INFLUENCE ON THE REGIONAL AND GLOBAL CLIMATE. THUS, THE CHANGE OF THE QINGHAI-TIBETAN PLATEAU ECOSYSTEM IS EXPECTED TO AFFECT …  相似文献   

20.
森林生态系统具有碳源和碳汇双重功能,调控森林中碳输入方式对于实现我国“碳中和”目标具有重要意义。作为森林土壤有机碳(SOC)的主要来源,不同碳(C)输入方式(如地上凋落物、地下植物根系等)对森林生态系统土壤氮(N)循环的影响一直是相关学者的研究重点。笔者综述了目前国内外不同C输入方式对土壤活性N库、土壤N矿化、硝化过程及氧化亚氮(N2O)排放的影响研究现状,分析了森林土壤活性N库及N转化过程对不同C输入变化的响应,发现:① 地上C排除可以降低土壤有效态氮(主要包括$NH_{4}^{+}$-N和$NO_{3}^{-}$-N)的含量,但地下C排除却增加了土壤$NH_{4}^{+}$-N含量。C输入方式的改变对土壤微生物生物量氮(MBN)含量影响具有不确定性,这可能与生态系统类型、树种组成、时间尺度等因素相关。此外,地下C排除对土壤可溶性氮(DON)含量的影响较地上C排除的大,地下根系可能是影响土壤DON含量的主要贡献者。② 地上C输入对土壤N矿化及硝化速率的影响在短期内较大,而长期影响较小。其主要是通过间接改变土壤微生物活性从而影响了土壤N矿化及硝化过程,地下C排除增加了土壤N矿化速率,且随着时间尺度的增加表现更加明显。③ 地上C输入通过改变硝化和反硝化微生物的可利用C源而间接影响了N2O的排放,且受到树种影响显著,而地下C输入对N2O的影响因根系质量等的差异而发生改变。综上可知,森林土壤活性N库及N循环过程对不同C输入具有不同的响应机制,且受生态系统类型、物种、时间等因素影响较大。目前关于两种乃至多物种不同C的输入对森林土壤N影响的研究较少,且定性研究较为普遍;对优化森林生态系统地上地下C输入动态模型和精准预算不足,尚未建立完整的碳减排生态补偿机制。今后的研究亟须定量了解不同森林生态系统不同的C输入及其两者或者多物种之间的交互影响对土壤N的影响机制,且需更多地考虑在时间尺度上的长期变化过程;需要提升核算与预测森林地上地下碳中和能力,加快森林碳中和技术研发,为提前实现“碳中和”战略目标提供科技支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号