首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
深度还原-弱磁选回收稀土尾矿中铁的试验研究   总被引:1,自引:0,他引:1  
对某全铁品位为1625%的稀土尾矿进行了深度还原-弱磁选回收铁试验研究,研究了还原剂种类及用量、焙烧温度及时间、磨矿细度及磁场强度对铁精矿品位和回收率的影响,并采用SEM,XRD等手段对稀土尾矿、焙烧产物、铁精矿进行了测试.结果表明,在烟煤质量分数30%,焙烧温度1300℃,焙烧时间60min,磨矿细度-0074mm占75%,磁场强度118kA/m的条件下,所得铁精矿TFe品位可达8076%,铁回收率可达9324%;稀土尾矿经深度还原后,其中的赤、褐铁矿、硅酸铁等含铁矿物转化为单质铁,铁精矿品位和回收率较常规选矿方法大幅度提高,同时脉石矿物组成简单,有利于萤石的富集回收.  相似文献   

2.
以某稀土综合尾矿经磨矿-磁选-浮选处理后的含铌铁尾矿为对象,采用深度还原焙烧的方法分离回收铌和铁,研究还原焙烧条件对铌、铁分离效果的影响。结果表明,还原剂种类对铁回收率的影响较为显著,对铌的分离回收影响相对较小,还原剂为褐煤时铁回收率最高;还原时间的延长、焙烧温度的升高以及助熔剂用量的增加均有利于铌、铁的分离回收;在还原剂褐煤用量为10%、助熔剂用量为15%、还原时间为60min、还原温度为1300℃的条件下可实现含铌铁尾矿中铌、铁的高效分离回收,得到w(TFe)为94.82%的铁精矿,铁回收率为99.53%,同时还得到w(Nb2O5)为0.3519%的铌粗精矿,铌回收率为99.62%。  相似文献   

3.
为实现东鞍山铁矿石浮选尾矿的资源化利用,对浮选尾矿预富集精矿开展了悬浮磁化焙烧试验研究.结果表明,浮选尾矿预富集精矿主要矿物组成为赤褐铁矿、磁铁矿、菱铁矿和石英,TFe品位为31.13%.浮选尾矿预富集精矿适宜的悬浮磁化焙烧工艺参数为:气体流量600mL/min,氢气体积分数20%,焙烧温度520℃,焙烧时间20min.焙烧产品经弱磁选可得铁精矿的TFe品位为64.23%,回收率为79.53%.焙烧产品的铁物相,XRD,VSM分析表明,经过悬浮磁化焙烧后,原矿中赤褐铁矿和碳酸铁转变为磁铁矿,矿石的饱和磁化强度和磁化率增强.  相似文献   

4.
基于煤基焙烧还原-磁选工艺,进行了宣龙式难选鲕状赤铁矿石提铁过程及其影响因素的实验研究.以铁精矿品位和铁回收率为评价指标,确定了适合于该类矿石的最佳工艺条件:焙烧还原温度为1 200℃,还原剂用量为30%,焙烧还原时间为60min,焙烧产物磁选前的磨矿细度为-45μm占96.19%,磁选的磁场强度为111kA.m-1.在该工艺条件下,可以使铁精矿品位达到92.53%,铁回收率达到90.78%.  相似文献   

5.
为了改善铁原料冶金性能,降低制铁成本,针对包钢某选矿厂选铁精矿采用"电磁螺旋柱-细筛再磨-弱磁选"工艺对其进行单条件试验及流程试验,由电磁螺旋柱单条件试验可知,电磁螺旋柱最佳励磁场强为4 000 Oe,给矿浓度为40%,沉砂浓度为61.73%,由磨矿细度试验可知,再磨细度-0.074 mm占94.82%为最佳之,由弱磁选试验可知,粗磁选场强最佳为1 800 Oe,磁选精选场强最佳微为1 600 Oe,在各条件均处于最佳时,进行流程试验,结果表明,试验最终能够获得品位为69.22%,回收率为94.86%的铁精矿。  相似文献   

6.
对河北某地微细粒级的赤铁矿分别用阶段磨矿-重选-弱磁选-高梯度磁选-阴离子反浮选和阶段磨矿-弱磁选-高梯度强磁选-反浮选试验流程进行选别试验,前者所得的选矿指标为,精矿产率为44.32%,铁品位为62.88%,铁回收率为79.84%。后者的试验指标为,精矿产率为43.29%,品位为65.32%,铁回收率为80.43%。  相似文献   

7.
金川镍弃渣铁资源回收综合利用   总被引:4,自引:0,他引:4  
针对金川镍弃渣的特点,采用深度还原-磁选工艺,对其进行铁资源回收的综合利用实验研究,获得了铁品位为89.84%,铁回收率达93.21%的铁精矿. 探讨了还原温度、还原时间、二元碱度、磨矿细度和磁场强度等不同实验条件对产品指标和分离效果的影响. 通过X射线衍射分析、光学显微分析、SEM分析、化学分析等手段确定了镍弃渣与铁精矿的物相组成和特点.  相似文献   

8.
为了进一步开发利用尾矿资源,经实验室选铁、选钛工艺试验研究,将含TFe、TiO2品位分别为14.90%、6.50%的废弃尾矿,采用再磨再选工艺流程进行回收,可获得产率为9.18%、品位为55.26%的铁精矿,并能获得产率为3.56%、品位为47.29%的钛精矿。  相似文献   

9.
低品位尾矿中锰资源的磁选回收利用   总被引:1,自引:0,他引:1  
采用自主研发的高梯度水平励磁永磁磁辊对低品位碳酸锰尾矿进行湿式磁选试验,研究磨矿细度、磁场强度和矿浆浓度对湿式磁选效果的影响,从而获得富锰效果最佳的工艺参数.研究结果表明:与传统垂直励磁磁辊相比,水平励磁磁辊可显著提高锰品位与锰回收率,降低漏选率;在磨矿细度为80%,磁场强度为796.18 kA/m、矿浆浓度为20%的工艺参数下锰精矿品位可达到21%以上,锰回收率达到86%以上,在低品位尾矿有价金属资源回收利用方面工程的应用价值巨大.  相似文献   

10.
对西北某地原矿铁品位为44.12%的高碱度贫褐铁矿进行选矿试验研究。采用单一强磁选工艺精矿铁品位只有48.84%,而采用焙烧磁选工艺,则可获得铁品位58.45%、相对焙烧矿回收率为93.62%的铁精矿。这两种铁精矿均为高碱度铁精矿,适宜与酸性铁精矿配合使用。  相似文献   

11.
分选工艺是影响矿物分选指标的重要因素.在对山东某榴辉岩矿物性质深入研究的基础上,通过磨矿细度、摇床重选、强磁选、电选等工艺试验,确定合理的分选流程为:一次闭路磨矿,分级摇床重选,石榴石强磁选,强磁选中矿、尾矿合并到一起进行两次电选.试验结果表明,该工艺流程可以获得四种精矿:石榴石品位94.36%、回收率79.95%;绿辉石品位79.89%、回收率96.00%;白云母品位94.11%、回收率91.92%;金红石品位85.72%、回收率37.05%.仅产生1.44%的矿泥尾矿,实现了榴辉岩的综合利用.  相似文献   

12.
阮纪文 《科技资讯》2014,(14):64-65
对某含铁选金尾矿中的化学成分及铁矿物物相进行了分析,通过大量的探索性试验制定了铁回收试验的强磁—浮选联合流程,在试验确定的最优工艺技术条件下,得到铁品位为60.83%、产率为29.7%的铁精矿,尾矿含铁15.84%,仍可以作为水泥辅料销售。得出在尾矿中回收铁矿物具有经济效益显著的结论。  相似文献   

13.
采用强磁预选—磁化焙烧—磁选联合工艺对大西沟难选菱铁矿石进行试验研究.结果表明:在磨矿细度-74μm占55%、强磁粗选磁场强度318kA/m、强磁扫选磁场强度717kA/m的条件下,可得到TFe品位为28.47%、回收率为96.78%的强磁精矿;强磁精矿在中性气氛中于焙烧温度700℃、焙烧时间40min、磨矿细度-43μm占95%、弱磁选磁场强度104kA/m的综合条件下,获得TFe品位为59.29%、回收率87.50%的精矿产品.XRD、光学显微镜和VSM等分析结果表明:难选菱铁矿和褐铁矿经焙烧后转变为易选磁铁矿,新生成的磁铁矿表面疏松多孔,多呈胶状,与脉石矿物紧密共生,其磁化强度和比磁化系数均显著提高.  相似文献   

14.
针对重庆綦江沉积型赤褐-菱铁矿,提出离析焙烧-弱磁选工艺实现提铁。矿石与氯化钙、焦炭混匀后置入焙烧炉中进行离析焙烧,铁从弱磁性矿物转变为强磁性矿物后,焙烧矿采用弱磁选回收铁。研究结果表明:焙烧矿中产生了以磁铁矿(Fe3O4)、金属铁(Fe)为主的新矿相及少量的氧化亚铁(Fe O)新矿相,实现了铁与其他杂质的有效分离。在离析焙烧温度为950℃、离析焙烧时间为60 min、氯化钙和焦炭质量分数分别为4%和15%、弱磁选磁场强度H为0.10 T、弱磁选磨矿细度小于0.038 mm的铁精矿质量分数为95%的综合工艺条件下,得到了铁品位为72.02%,硫和磷质量分数分别为0.080%和0.053%,铁回收率为82.09%的铁精矿分选指标,提铁效果显著。  相似文献   

15.
硫酸渣中含有大量的铁矿物,为了充分利用资源和利于环保,进行了选矿试验.介绍了从硫酸渣中提高铁精矿品位的工艺流程,经过预先分级,磁选机选别,粗精矿再用磁选柱选别,获得了品位65.07%、回收率73.24%的铁精矿.  相似文献   

16.
模拟链篦机-回转窑工艺直接还原磁选回收铜渣尾矿中的铁,试验研究了碱度、预热温度、预热时间、还原温度、还原时间及煤矿比等因素对铁精矿质量的影响.结果表明:碱度为0.3,预热温度为1 000℃,预热时间为9 min,还原温度为1 200℃,还原时间为70 min,煤矿比为2:1,焙烧矿球磨时间为20 min(小于0.074 mm,占95%左右)以及磁场强度为0.08 T的条件下,铁品位及回收率均达到90%以上.  相似文献   

17.
王磊 《科技资讯》2012,(14):122-122
根据河北邢台某磁铁矿的化学成分、铁物相分析,进行了磁选流程试验。试验采用两段磨矿、三段磁选流程进行处理。第一、二段磨矿细度分别为-0.074mm占60%和99.38%,经过分选后磁选精矿品位可以达到63.29%,回收率为69.42%,选矿比为3.11。  相似文献   

18.
为了进一步开发利用尾矿资源,经实验室选铁、选钛工艺试验研究,将含TFe、TiO2品位分别为14.90%、6.50%的废弃尾矿,采用再磨再选工艺流程进行回收,可获得产率为9.18%、品位为55.26%的铁精矿,并能获得产率为3.56%、品位为47.29%的钛精矿。  相似文献   

19.
应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性. 采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律. 结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1. 1、磁感应强度50 mT和磨矿细度-0. 074 mm质量分数86. 34%. 在此工艺条件下,可以获得金属化率94. 23%的还原产物,磁选指标分别达到精矿铁品位97. 19%和尾矿钛品位57. 94%,对应的铁、钛回收率为90. 28%和87. 22%,有效地实现海砂矿中铁钛元素的分离富集.  相似文献   

20.
拜耳法赤泥深度还原提铁实验   总被引:2,自引:0,他引:2  
针对国内某高铁拜耳赤泥的特点进行了深度还原--磁选实验,探讨了还原剂量、添加剂量、还原温度、还原时间、磨矿细度和磁场强度等不同影响因素对铁精矿品位和回收率的影响.通过化学多元素分析、X射线衍射分析、扫描电镜和能谱分析等方法,确定了原赤泥及所得铁精矿的物相组成和特点.在不采用添加剂时,所得铁精矿的品位为85.66%,回收率为91.86%;采用添加剂时,所得铁精矿的品位为91.23%,回收率为93.13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号