首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为使Ni-YSZ阳极支撑的固体氧化物燃料电池能以碳氢气为燃料气稳定工作,采用化学镀银法对电池阳极进行镀银改性研究,在750℃分别以氢气和乙烷为燃料气,测试电池的电化学性能,并采用扫描电子显微镜对测试前后的阳极进行表征.结果表明阳极镀银后,电池极化电阻减小,放电性能和抗积炭能力提高.化学镀银法镀银10 min的电池在750℃以氢气为燃料气时,最大功率密度463 m W·cm~(-2),比未镀银电池增加28.6%,以乙烷为燃料气时能以330 m A·cm~(-2)恒流稳定运行24 h.这使得固体氧化物燃料电池以碳氢气为燃料气稳定运行成为可能,将为污泥资源化提供一个新途径.  相似文献   

2.
采用溶胶-凝胶法在中温固体氧化物燃料电池(ITSOFC)阴极LaBaCo_2O_(5+δ)(LBCO)和电解质yttria-stabilized zirconia(YSZ)界面之间制备与电解质同质的过渡界面层。利用X线衍射仪(XRD)研究物质的晶体结构和化学相容性,通过扫描电子显微镜(SEM)、交流阻抗谱法和循环伏安法分别对试样的微观结构和电化学性能进行了研究。实验结果表明:过渡界面层使电解质表面形成"岛状"列阵结构;在800℃时,未引入和引入YSZ过渡界面层LBCO阴极的比表面电阻从0.354Ω·cm~2降低到0.215Ω·cm~2,下降了约39.3%。过渡界面层的引入使阴极的比表面电阻和极化过电位均降低,表现出更好的电化学性能。  相似文献   

3.
本文用电位扫描法研究了锑在HCI溶液中的阳极溶解过程。根据Stern-Geary方程,用电子计算机求出锑的电化学溶解速度(用腐蚀电流表示)I_(corr),Tafel常数b_A,b_C和极化电阻R_p。它们分别为I_(corr)=19.90mA/cm~2,b_A=39.80mV.b_C=39.80mV和R_p=0.4342Ω·cm~2,并对锑溶解过程的影响因素进行了讨论。  相似文献   

4.
质子交换膜燃料电池(PEMFC)长期运行过程中,其部件因损伤产生的杂质金属离子对燃料电池的电化学性能有重要影响。模拟PEMFC中Ca2+污染燃料电池工况,研究了Ca2+对PEMFC电化学性能的影响。实验结果表明:随着污染时间的增加,燃料电池性能逐渐衰减,当污染时间超过9 h,电池电压急剧降低;在高电流密度区(电流密度>400 mA/cm2),电压衰减最明显。在500 mA/cm2电流密度下恒电流放电2 h后,电压降低了41%。Ca2+的存在及其积累对质子交换膜燃料电池有明显的毒化作用。  相似文献   

5.
采用伏安扫描法、计时电流法和恒电流沉积法研究了铝在 NaAlCl_4 熔体中的电化学沉积过程。铝的电化学还原反应涉及一个成核/生长机理,且成核过程是渐进的。沉积铝的形状取决于电流密度。只有当电流密度为 2—10 mA/cm~2 时,沉积铝才是规则平整的。在高电流密度下(>15 mA/cm~2),由于含铝离子的扩散缓慢,沉积铝是枝晶状或蓬松状的。在低电流密度下(<0.7 mA/cm~2),由于电成核过程的控制作用,沉积铝呈棉絮状。  相似文献   

6.
1种以K2SO4水溶液作为电解液的高电压对称型活性炭基超级电容器.采用循环伏安法、恒电流充电/放电、电化学阻抗谱和循环稳定性等电化学方法研究了其电化学性能.结果表明,该电容器的工作电压为1.7V,在电流密度为0.25A·g-1时,单电极比电容高达156F·g-1,在功率密度为213 W·kg-1时能量密度达到38Wh·kg-1(以正负极活性物质的总质量计),等效串联电阻为1.92Ω,3 600s后的漏电流是0.36mA,在400次充放电循环中库伦效率接近100%.该研究结果表明中性的K2SO4水系电解液对探索一种新型高能量密度的超级电容器提供了一种新的可能.  相似文献   

7.
设计并制备了Ni-Fe金属支撑型第三代固体氧化物燃料电池(SOFC)并对其进行表征.SOFC电池阳极、电解质、阴极分别采用了NiO-YSZ(氧化钇稳定的氧化锆)、YSZ及YSZ-LSCF(La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ))材料,制备方法采用了单层流延及多层等静压结合的方法.在650~750℃的温度范围内对电池的性能进行表征,当阴极为空气,阳极通入氢气时,电池750℃最大功率密度为0.74 W/cm~2,电阻为0.45Ωcm~2,测试结果表明,此结构为Ni-Fe//Ni-YSZ//YSZ//YSZ-LSCF的金属支撑型固体氧化物燃料电池具有极高的性能及实用价值.  相似文献   

8.
为了更好地处理电厂柠檬酸酸洗废水,制备了以新型光催化剂WO3-TiO_2改性TiO_2纳米管阵列为光阳极、Pt为阴极、柠檬酸酸洗废水为电解液的燃料电池体系;并研究了其在可见光下的降解效果。对直接光解、光催化降解、光催化燃料电池降解三种方法降解效果进行了比较;并通过控制通气与pH,讨论了光催化燃料电池降解的影响因素。结果表明在添加电解质Na_2SO_4浓度为0.2 mol/L时,电池体系的性能达到最佳,开路电压0.32 V,短路电流0.49 mA·cm~(-2),最大功率密度为0.068 m W·cm~(-2)。该条件下电池体系运转120 min对高浓度柠檬酸酸洗废水(COD=16 500 mg/L)的COD去除率达46%。  相似文献   

9.
本文基于Catalyst Coated Membrane(CCM)技术,采用70%Pt/C催化剂制备质子交换膜燃料电池(PEMFC)的核心部件膜电极组件(Membrane electrolyte assembly,MEA)。考察了电池的放电性能,并利用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)等技术对电池的电化学性能进行了表征。研究表明采用质量分数为70%的Pt/C催化剂与Nafion的最佳质量比例为6:1,MEAΩ在600mA/cm~2电流密度下,电压能达到0.69V,催化层的厚度显著降低,性能也明显优于40%Pt/C催化剂制备的MEA。  相似文献   

10.
质子交换膜燃料电池在不同放电状态下的阻抗分析   总被引:3,自引:0,他引:3  
针对质子交换膜燃料电池在不同放电状况下具有不同阻抗的特性,通过电化学阻抗谱法测量了单蛇形流场质子交换膜燃料电池在不同放电电流下的电化学阻抗谱图,并通过R(QR)等效电路模拟得到电池在不同工作状态下的电路元件参数.实验结果表明,由于随着放电电流的增大,电池内的水由少到多再到过量,从而引起电极上的反应过程由慢到快再变缓,因此电池内部的电荷转移电阻先减小后增大.在大电流情况下,由双电层充放电效应引起的附加阻抗比较明显,使得放电电流越大,电池的系统阻抗增大越显著,而在中等放电电流(5 A)时,电池系统的阻抗最小.  相似文献   

11.
采用开路电压(OCV)工况研究了质子交换膜燃料电池(PEMFC)膜电极的耐久性,在OCV工况运行过程中,定期地通过极化曲线、电化学交流阻抗谱(EIS)、线性扫描伏安法(LSV)、短路电阻测试等在线测试方法对膜电极性能进行分析。当OCV工况运行结束后,采用扫描电镜(SEM)、离子色谱对质子交换膜(PEM)厚度和阴、阳极废水进行分析。结果表明,在OCV工况下运行115h后,PEMFC的开路电压由1.013V下降到0.794V,最大功率密度由538.8mW/cm~2下降到196mW/cm~2;在线电化学测试结果表明,欧姆电阻先减小后增大,氢气渗透通量逐渐增大,短路电阻逐渐减小;离子色谱测试结果表明,阴极和阳极废水中都存在氟离子;SEM表征发现,PEM厚度减小;在OCV工况下,PEM发生了衰减,从而导致PEMFC开路电压下降和性能衰减。研究结果表明PEM是影响膜电极耐久性的重要因素。  相似文献   

12.
304不锈钢双极板在模拟PEMFC环境中的性能   总被引:1,自引:0,他引:1  
为降低质子交换膜燃料电池(PEMFC)的生产成本,选择成本低廉、强度高、化学稳定性好的不锈钢材料替代传统的石墨双极板.以304不锈钢为研究对象,采用电化学方法测定其在模拟PEMFC环境下的极化曲线和对应于PEMFC工作电位下的恒电流极化曲线,用伏安法测量304不锈钢表面氧化膜/钝化膜与碳纸之间的接触电阻.结果表明,在模拟PEMFC环境中,304不锈钢钝化电流密度低于16μA/cm2,电流没有出现明显的波动;304不锈钢在模拟PEMFC环境中表面生成的钝化膜的接触电阻大于空气中形成的氧化膜的接触电阻.  相似文献   

13.
采用聚3,4-乙烯二氧噻吩(PEDOT)修饰石墨阳极,采用恒电位仪、扫描电子显微镜、能谱仪对其进行表征,并探讨其在U型微生物燃料电池(MFC)中影响海洋产电菌Shewanella sp.S2产电的机制.结果表明:电化学法合成的PEDOT呈片状覆盖在石墨表面,并带有一些颗粒状凸起(直径约200nm).PEDOT修饰后,MFC表观内阻从471Ω下降到390Ω;稳定期的电流密度(173.6mA/m~2)是未修饰MFC(74.4mA/m~2)的2.33倍.扫描电镜结果显示,PEDOT修饰显著提高了产电菌在阳极表面的吸附量.由于电极表面的粗糙度远小于细菌尺寸,推测MFC产电能力的提高主要是由于PEDOT与产电菌间的电荷相互作用而不是电极表面粗糙度.  相似文献   

14.
空冷型质子交换膜燃料电池内部反应状态是影响电池输出性能和稳定性的关键因素.通过研制空冷燃料电池反应状态的原位测试装置,实现电池温度和电流密度的实时测量,揭示氢气出口脉排间隔、氢气入口气压和阴极风速对电池性能的影响机制.研究表明:空冷电池中温度和电流密度分布不均,平均电流密度为500 mA/cm2时,电池内温度极差达到20℃,电流密度极差达到400 mA/cm2.氢气出口脉排间隔越短、入口气压越大,氢气出口区域性能越好,分布均匀性越好,电流密度波动也越小,输出稳定性提高.如果阴极风速过低,电池局部温度高,温度分布均匀性降低;风速过高则导致生成水被吹走,质子膜含水量下降,电流密度分布均匀性变差.  相似文献   

15.
用化学方法合成Schiff碱型的过渡金属络合物单体[Ni(Salen)],采用恒电位法在不同电位下合成了过渡金属聚合物Poly[Ni(Salen)],并对其进行了电化学性能与物理表征研究. 当电位为1.2 V时制备的聚合物在恒电流充放电测试中小电流密度0.1 mA/cm2下容量可以达到62.4 mF/cm2,大电流密度下容量2.5 mF/cm2.场发射扫描电子显微镜法(FESEM)显示,聚合物Poly[Ni(Salen)]为一种由于细长的丝状体缠绕而产生的团簇状的颗粒结构.  相似文献   

16.
本文采用旋转圆盘电极并结合线性扫描、恒电位单阶跃、恒电流电解、循环伏安等电化学测试方法综合考察了Ni_3S_2在硫酸盐溶液中的阳极电化学溶解动力学规律,查明了其活性溶解反应的控制步骤;并利用Au-Hg齐环电极检测到中间硫氧离子的还原电流,提出了Ni_3S_2阳极分段溶解逐步氧化的反应机理。求取了反应速度常数、固相扩散系数、反应活化能等动力学参数。本文是冰镍电化学行为研究工作之一。  相似文献   

17.
TiO2-ZnO光催化剂对AB5型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
采用溶胶凝胶自燃烧法合成TiO2-ZnO光催化剂,采用XRD和SEM对其形貌结构进行表征,并将其修饰于AB5型储氢合金,制备成催化剂含量(质量分数)为10%和20%的2种光催化储氢合金电极(TZMH电极)。通过恒电流充放电、交流阻抗及阶跃电位测试研究TiO2-ZnO对AB5型储氢合金电极电化学性能的影响。研究结果表明:TiO2-ZnO催化剂成分为ZnO及ZnTiO3,平均粒径约20 nm;相对于AB5合金电极,TZMH电极活化性能和电化学容量略有下降,AB5合金电极初始活化容量为321 mA.h.g-1,10%TZMH电极和20%TZMH电极分别降至300.8 mA.h.g-1和292.9 mA.h.g-1;循环性能得到提高,AB5合金电极、10%TZMH电极和20%TZMH电极以1 C倍率循环100次的容量保持率分别为66.2%,80.0%和83.9%;10%TZMH电极紫外光照射时电荷转移电阻明显小于未受光照时的电阻,阶跃电位测试的响应电流大于未受光照时的响应电流。  相似文献   

18.
在预炭化硬炭前驱体酚醛环氧树脂中掺入硼酸制备含硼原子的锂离子电池硬炭基负极材料.通过X射线衍射仪分析、扫描电子显微镜等对材料的微观结构进行表征,采用氮气吸脱附法测定材料的孔特性和比表面积,利用循环伏安、交流阻抗以及恒电流充放电实验研究材料的电化学性能.结果表明:随着硼酸掺入量的增加,硬炭的层间距、比表面积、孔体积和首次不可逆比容量变小,首次库伦效率提高,硼酸掺入质量分数为10%时,硬炭可逆比容量从332.2mAh·g~(-1)增长到461.1mAh·g~(-1),对应的固体电解质中间相膜的电阻从33.86Ω减少为24.53Ω.  相似文献   

19.
采用化学气相沉积法制备碳纳米管,将碳纳米管作为添加剂掺杂制备MH/Ni电池正极,研究了正极中添加不同含量在不同充放电制度下对电化学性能的影响. 结果表明,在30 mA/g恒电流放电条件下,添加了碳纳米管的模拟电池放电性能并没有得到改善,而且比没有添加的要差些;但在60 mA/g恒电流放电条件下,添加碳纳米管的作用比较明显,添加量为质量分数1%的碳纳米管电化学性能较好,在第40和80次循环时放电容量分别为272.2 mAh/g 和260.3 mAh/g,而且放电平台比较平稳.  相似文献   

20.
利用水相合成和煅烧法制备了一种具有六边形结构的片状多孔四氧化三钴(Co_3O_4)材料,通过扫描电镜、X射线衍射仪和比表面-孔径分布分析仪分别表征了其形貌、晶相和比表面及孔径分布情况。采用循环伏安法、恒流充放电法和交流阻抗法考察了该Co_3O_4修饰玻碳电极(Nafion/Co_3O_4/GCE)的电化学性质。结果表明,在2.0 mol·L-1KOH溶液中,电位窗口为-0.4~0.4 V(vs. Hg/HgO)的范围内,该Co_3O_4在1.0 mA·cm~(-2)的电流密度下比容量达39.39 mF·cm~(-2),在5.5 mA·cm~(-2)的电流密度下经过1000次循环后比电容量从初始的25.02 mF·cm~(-2)上升至27.24 mF·cm~(-2),表现出良好的电容特性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号