首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
提出了一种利用传统向量空间模型VSM(Vector Space Model)和词共现概念共同表示文档特征的新方法,并将该方法应用于基于平面划分的中文文本聚类中.通过实验,表明基于传统VSM和词共现概念的文本聚类方法与传统的单纯基于  相似文献   

2.
为了提高宋词文档分类的精确性,本文在广泛采用的向量空间模型(Vector space model,VSM)的基础上,对分类算法中使用的特征项做了相应的修改,提出了频繁关键字共现的概念.在实验过程中,首先提取了宋词语料库中的关键字,再利用发现关联规则的Apriori算法发现分类时所需要的频繁关键字共现,最后结合关键字和频繁关键字共现,利用最邻近算法(KNN)对宋词文档进行风格分类.实验结果发现,结合了频繁关键字共现的VSM可以提高对宋词风格分类的准确度.可见,频繁关键字共现确实提供了风格分类中所需的更多信息.  相似文献   

3.
基于特征贡献度的特征选择方法在文本分类中应用   总被引:1,自引:0,他引:1  
在目前的文本分类问题中,特征选择方法被认为是提高分类精度和效率的一种有效方法.提出了一种基于特征贡献度FCD(feature contribution degree)的特征选择方法,本方法将某个特征对于类别之间区分能力的贡献度大小作为该特征被选取的条件,特征对于某一类别的FCD值为特征在该类中出现的文档数与在所有类别中出现的文档数的比值.对该方法进行了实验,并与一些常用的特征选择方法进行了比较,实验结果表明该方法具有更好的分类效果.  相似文献   

4.
根据模式聚合理论提出了一种文本特征降维的新方法.结合动态Kohonen网络理论检验了文本分类效果.在网络训练阶段引入了监督机制,提高了网络的分类速度和精度.应用模式聚合(PA)理论建立文本集的向量空间模型,从分类贡献的角度强化了词条的作用,消减了原词条矩阵中包含的冗余模式,有效地降低了向量空间的维数,提高了文本分类的精度和速度,并通过实验证明了该方法的泛化能力.  相似文献   

5.
提出了改进的文本相似度计算方法,在计算文本的相似度时,赋予不同文本块中的句子不同的权值,同时直接去掉短句子和合并高相似度的句子以精简句子包中句子数量以提高运算速度.改进后的文本相似度计算方法为:先根据句子相似度的计算方法计算句子的相似度,再计算文本块的相似度,最后按照文本块的权值计算整个文本的相似度.经试验证明,改进后的算法在文本召回率、准确率和F1值上都有明显的提高.  相似文献   

6.
传统的文本表示是在向量空间模型的基础上,采用特征选择方法降低文本的维数,这种方法认为文本中词语是相互独立的,没有考虑彼此之间的语义信息.文章提出一种新的基于语义特征选择的文本分类方法,在已有特征选择的基础上,利用词语之间的语义关联性,将那些与已选择的词语具有密切联系的词语加入词语特征空间.实验表明,该方法与已有的特征选...  相似文献   

7.
在向量空间模型的中文文本分类系统中,多数传统的特征选择算法忽视低频单词对分类的正面贡献,互信息特征选择过分放大低频单词对分类的贡献。针对这一问题,通过引入对数似然比统计量,提出对数似然比特征选择算法。与互信息算法相比,低频单词对分类的贡献没有过分放大;与卡方算法相比,低频单词对分类的贡献计算更为准确。算法在考虑低频单词对分类结果产生正面影响的同时,能较好地控制其对分类产生的负面影响。采用KNN(K Nearest Neighbor)分类方法,特征选择选取对数似然比和传统特征选择算法,实验结果表明,对数似然比特征选择算法能够提高分类器的总体性能。  相似文献   

8.
分析了文本自动分类的关键理论及技术,给出一个已实现的基于向量空间模型(VSM)的文本自动分类系统的框架模型,重点描述此系统的实现算法.此算法在训练阶段通过部分训练集确定向量的特征提取维数,并提出一种"平均值"匹配阈值调整方法,从而在精度和效率方面优于传统的分类算法.实验表明此系统查准率为91.8%,查全率为85%.  相似文献   

9.
针对传统的基于向量的中文文本表示方法预处理过程比较复杂,应用于高维数据容易产生维数灾难的局限性,文章提出了一种基于张量空间模型的中文文本分类方法,用三阶张量表示文本集,将基于向量的kNN分类器扩展到张量上以构建分类器。该方法简化了预处理过程,提高了准确率,并使得更多张量学习方法能够在中文文本分类中得以应用。实验证明其具有较高的分类准确率,有一定的实用价值。  相似文献   

10.
在介绍本分类的背景及传统基于向量空间模型特征选择不足之处的同时.提出了不同特征选择方法相结合的本分类模型.该模型首先对本进行分析.把本表示成向量空间的形式.本在经过预处理后.按一定规则提取关键词.关键词的提取中增加了对名词短语的识别.特征选择的方法上,结合了档频数和互信息量,并对他们进行了改进.实验结果表明,使用新方法进行分类所得到的分类精度得到了一定的提高.  相似文献   

11.
文本分类中的特征选取算法   总被引:3,自引:0,他引:3  
分析了常用的几种特征选取方法,提出了改进互信息算法。实验结果显示改进的互信息算法是可行的。  相似文献   

12.
提出一种新的文档表示模型——基于共现词对的向量空间模型。模型以文档中共现的词对为基本考察对象,通过统计学特征选择有代表性的词对来表示文档。基于覆盖算法的文本分类实验表明此模型有较强的文档表示效果,为文本自动化处理提供了一条新思路。  相似文献   

13.
文本分类技术是文本挖掘的核心,本文简单介绍了该研究热点的研究动态、定义并针对其系统结构给出了一个简要的概述,然后分析了文本分类处理过程中的关键技术,最后对依然存在的某些问题进行了展望。  相似文献   

14.
基于属性约简的方法,放弃以往复杂的规则匹配算法,提出将约简后的多种属性组进行析取,筛选特征项,并构造分类器.实验结果表明,此算法不仅简单,还能降低维数和提高分类结果.  相似文献   

15.
基于词向量空间模型的中文文本分类方法   总被引:4,自引:0,他引:4  
大多文本分类方法是基于向量空间模型的,基于这一模型的文本向量维数较高,导致分类器效率难以提高。针对这一不足,该文提出基于词向量空间模型的文本分类方法。其主要思想是把文本的特征词表示成空间向量,通过训练得到词-类别支持度矩阵,根据待分文本的词和词-类别支持度矩阵计算文本与类别的相似度。实验证明,这一分类方法取得了较高的分类精度和分类效率。  相似文献   

16.
文本的自动分类   总被引:1,自引:3,他引:1  
主要介绍了文本分类的任务,给出了文本分类所用到的机器学习方法,并介绍了降维和几种文本自动分类器的算法,最后引入了评价分类器性能的两个参数。  相似文献   

17.
KNN文本分类算法中的特征选取方法研究   总被引:1,自引:0,他引:1  
曹勇  吴顺祥 《科技信息》2006,(12):26-28
对基于中文的文本分类过程进行了介绍,重点介绍了文本分类中几种特征选取的方法,详细介绍了KNN分类算法,最后介绍了文本分类的评估方法并通过实验测试对比了几种特征选择的方法在基于KNN技术的文本分类中的使用效果.  相似文献   

18.
文本分类是指在给定分类体系下,根据文本的内容自动确定文本类别的过程.阐述了一个文本分类系统的设计和实现。对文本分类系统的系统结构、预处理、特征提取、词义扩展、学习和识别过程、分类算法等进行了详细介绍。引入smooth技术改进词语权重,介绍向量空间模型.结果表明查全率和准确率均达到80%左右,而且smooth的引入有效地改善了分类性能.  相似文献   

19.
从自然语言的角度考虑词性选择,同时从统计学角度考虑删除文档频率过低的特征词,从而避免产生维数灾难,通过考查类别本身特征和类别之间的关系来提取类别特征向量,采用传统夹角余弦公式考查文本与类别的相似度,实现一种过程简单,易于理解且分类效果不错的文本分类系统。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号