首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Four ATP-binding sites in the midregion of the beta heavy chain of dynein.   总被引:27,自引:0,他引:27  
K Ogawa 《Nature》1991,352(6336):643-645
The 'motor' proteins of eukaryotic cells contain specialized domains that hydrolyse ATP to produce force and movement along a cytoskeletal polymer (actin in the case of the myosin family; microtubules in the case of the kinesin family and dyneins). There are motor-protein superfamilies in which each member has a conserved force-generating domain joined to a different 'tail' which conveys specific attachment properties. The minus-end-directed microtubule motors, the dyneins, may also constitute a superfamily of force-generating proteins with distinct attachment domains. Axonemal outer-arm dynein from sea urchin spermatozoa is a multimeric protein consisting of two heavy chains (alpha and beta) with ATPase activity, three intermediate chains and several light chains. Here I report the sequence of cloned complementary DNA encoding the beta heavy chain of a dynein motor molecule. The predicted amino-acid sequence reveals four ATP-binding consensus sequences in the central domain. The dynein beta heavy chain is thought to associate transiently with a microtubule during ATP hydrolysis, but the ATP-dependent microtubule-binding sequence common to the kinesin superfamily is not found in the dynein beta heavy chain. These unique features distinguish the dynein beta heavy chain from other motor protein superfamilies and may be characteristic of the dynein superfamily.  相似文献   

2.
Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.  相似文献   

3.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloro- plast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demon- strated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred be- fore the evolution of land plants.  相似文献   

4.
蛋白质超家族模体保守性及物理化学性质的分析   总被引:1,自引:1,他引:0  
分析了全β类4个典型的蛋白质超家族中模体的功能,发现免疫球蛋白超家族和纤维结合蛋白类型Ⅲ超家族中的模体有相似的结构,但是它们行使不同的功能.血小板-白细胞C激酶底物的同源物结构域超家族和核酸结合超家族中的模体类型较多,虽然这些模体只是部分结构相似,然而它们却在各自的超家族中分别执行着相同的功能.文章进一步运用统计学方法研究了蛋白质超家族中保守模体的亲疏水特征、物理化学特征和结构特征.结果表明,模体差异有显著意义的残基存在于序列模体的保守位点上,相同的序列模体具有相似的二级结构.这些特征将对进一步识别超家族提供帮助.  相似文献   

5.
The highly reduced genome of an enslaved algal nucleus   总被引:34,自引:0,他引:34  
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.  相似文献   

6.
Genetic variation of human senses within the normal range probably exists but usually cannot be investigated in detail for lack of appropriate methods. The study of subtle perceptual differences in red-green colour vision is feasible since both photopigment genotypes and psychophysical phenotypes can be assessed by sophisticated techniques. Red-green colour vision in humans is mediated by two different visual pigments: red (long-wavelength sensitive) and green (middle-wavelength sensitive). The apoproteins of these highly homologous photopigments are encoded by genes on the X chromosome. Colour matches of males with normal colour vision fall into two main groups that appear to be transmitted by X-linked inheritance. This difference in colour matching is likely to reflect small variations in the absorption maxima of visual pigments, suggesting the presence of two common variants of the red and/or green visual pigments that differ in spectral positioning. We report that a common single amino-acid polymorphism (62% Ser, 38% Ala) at residue 180 of the X-linked red visual pigment explains the finding of two major groups in the distribution of colour matching among males with normal colour vision.  相似文献   

7.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, MesosUgma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloroplast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coil inhibited cell division and resulted in the filamentous cell formation, clearly demonstrated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred before the evolution of land plants.  相似文献   

8.
对厦门市潘涂虾场一口虾池1995年4月发生的一起简单裸甲藻赤潮进行跟踪调查,报道赤潮期间虾池水环境因子、浮游植物生物量的变化特征以及浮游植物的种类更替。调查显示,赤潮发生前浮游动物大量繁殖,快速消耗浮游植物进而引起池内无机营养盐(特别是活性磷酸盐)的积累是本次赤潮发生的重要原因。赤潮发生期间,赤潮生物的暴发性增殖在抑制多数藻类(主要是硅藻)的同时,也促进了一些裸藻类、甲藻类和蓝藻类的生长繁殖。  相似文献   

9.
Many parasitic Apicomplexa, such as Plasmodium falciparum, contain an unpigmented chloroplast remnant termed the apicoplast, which is a target for malaria treatment. However, no close relative of apicomplexans with a functional photosynthetic plastid has yet been described. Here we describe a newly cultured organism that has ultrastructural features typical for alveolates, is phylogenetically related to apicomplexans, and contains a photosynthetic plastid. The plastid is surrounded by four membranes, is pigmented by chlorophyll a, and uses the codon UGA to encode tryptophan in the psbA gene. This genetic feature has been found only in coccidian apicoplasts and various mitochondria. The UGA-Trp codon and phylogenies of plastid and nuclear ribosomal RNA genes indicate that the organism is the closest known photosynthetic relative to apicomplexan parasites and that its plastid shares an origin with the apicoplasts. The discovery of this organism provides a powerful model with which to study the evolution of parasitism in Apicomplexa.  相似文献   

10.
以星云湖为研究对象,通过多年水生态监测数据筛选出富营养化的关键因子,利用BP神经网络模拟叶绿素a与各因子之间的关系,定量分析了叶绿素a的压力响应情况,结果表明:CODMn、TP、TN是富营养化进程中3个关键因子;以0.02mg/L为富营养化湖泊中叶绿素a的控制目标,需分别削减61%的CODMn或77%的TP或20%的TN. 模拟结果显示,星云湖的藻类生长以氮为限制因子. 基于神经网络模拟分析星云湖的富营养化进程,为星云湖水污染控制提供重要的决策依据.  相似文献   

11.
为了掌握环境因子对滴水湖浮游植物的影响,2012—2013年期间分4个季度选取14个点位对滴水湖及其外围水体生境演变进行调查,分析环境因子以及浮游植物指标的时空变化特征,并对浮游植物指标和各项环境因子进行相关性分析以确定其生长的主要影响因子.湖区水质明显优于河道水质,且相对稳定;各点浮游植物密度的四季变化趋势与叶绿素a的变化大体上趋势趋同,但夏季浮游植物密度稍高,而各点冬季叶绿素a含量达到最高,滤食性鱼类的放养使得滴水湖夏季浮游植物的生长得到控制,浮游植物群落演替的总体趋势表现为大型浮游植物比例下降,小型浮游植物比例增加.相关性分析显示,滴水湖总磷浓度对浮游植物的生长具有重要影响.研究为滴水湖富营养化的防治以及水环境评价提供了理论依据.  相似文献   

12.
Huisman J  Pham Thi NN  Karl DM  Sommeijer B 《Nature》2006,439(7074):322-325
Deep chlorophyll maxima (DCMs) are widespread in large parts of the world's oceans. These deep layers of high chlorophyll concentration reflect a compromise of phytoplankton growth exposed to two opposing resource gradients: light supplied from above and nutrients supplied from below. It is often argued that DCMs are stable features. Here we show, however, that reduced vertical mixing can generate oscillations and chaos in phytoplankton biomass and species composition of DCMs. These fluctuations are caused by a difference in the timescales of two processes: (1) rapid export of sinking plankton, withdrawing nutrients from the euphotic zone and (2) a slow upward flux of nutrients fuelling new phytoplankton production. Climate models predict that global warming will reduce vertical mixing in the oceans. Our model indicates that reduced mixing will generate more variability in DCMs, thereby enhancing variability in oceanic primary production and in carbon export into the ocean interior.  相似文献   

13.
【目的】青钱柳是多功能树种,通过比较分析两种不同叶色青钱柳叶片色素、黄酮和单宁两类多酚含量及其光合特性的差异,为青钱柳良种选育提供理论依据。【方法】按照季节动态分别采集红叶青钱柳和绿叶青钱柳的新叶和成熟叶,测定其花色素苷、叶绿素、类胡萝卜素、单宁和黄酮含量,定期测定4种类型叶的净光合速率(Pn)和PSⅡ最大光化学效率(Fv/Fm),并采用单因素方差分析比较不同类型叶间的差异。【结果】红叶青钱柳的新叶花色素苷含量显著高于其他3种类型叶(P<0.05),但叶绿素和类胡萝卜素含量显著低于红叶青钱柳和绿叶青钱柳的成熟叶片(P<0.05);红叶青钱柳和绿叶青钱柳的成熟叶片中的黄酮和单宁含量在多数采样时间均无显著差异(P> 0.05),但在秋季,红叶青钱柳成熟叶片的单宁含量显著高于绿叶青钱柳的成熟叶片(P<0.05);由于红叶青钱柳的新叶积累高花色素苷含量而使总叶绿素含量下降,但其Pn与绿叶青钱柳的新叶不存在显著差异(P> 0.05),红叶青钱柳和绿叶青钱柳成熟叶片的Pn也不存在显著差异(P> 0.05)。【结论】较高浓度的花色素苷是红叶青钱柳新叶呈现红色的主要原因;红叶青钱柳和绿叶青钱柳叶中单宁与黄酮的含量存在一定差异,但总体上差异不显著;红叶青钱柳新叶阶段叶多酚类物质含量较高,但在成熟叶阶段与绿叶青钱柳无显著差异(P> 0.05)。因此,红叶这一表型性状可为青钱柳药用优良单株的筛选提供一定参考,红叶青钱柳在7—8月叶片仍保持较高花色素苷含量而呈现红色,比绿叶青钱柳具有更高的观赏价值。  相似文献   

14.
以决明(Cassia tora L.)幼苗为材料,采用半导体发光二极管光源(LED)精确调制白光(W)、红光(R)、蓝光(B)、绿光(G),对决明(C.tora)芽苗进行2 h的辐照处理,探究对决明(C.tora)芽苗菜光合色素、可溶性糖、可溶性蛋白、总酚、类黄酮及花青素含量的影响.结果表明:以室内自然光处理(D)为对照,各光质都显著提高决明(C.tora)芽苗菜中叶绿素及类胡萝卜素的含量,绿光处理叶绿素a含量增加了31.73%,白光处理叶绿素b以及叶绿素总含量、类胡萝卜素含量分别增加了50.20%、33.62%、52.71%;红光处理可溶性糖含量增加了57.04%;蓝光、白光和红光处理可溶性蛋白含量分别增加了69.33%、51.74%、40.58%;几种光质处理后总酚和类黄酮含量都明显高于对照组,但不同光质间差异不明显;蓝光处理花青素含量最高,增加了32.89%.生产中可通过增加LED照射提高决明(C.tora)芽苗菜的营养品质.  相似文献   

15.
In a genome the set of proteins are formed by duplication and combination of domain superfamilies. P-loop containing nucleotide triphosphate (NTP) hydrolases superfamily is massively duplicated and has the most different partner superfamilies among archaea, bacteria and eukarya, Here, we study the distributions of duplication and combination of p-loop containing NTP hydrolases superfamily in 169 completed genomes. When the total number of domains in a genome is larger, duplication and combination partners of p-loop conraining NTP hydrolases are more. This phenomenon is more obvious in metazoa. The distributions of abundance and corn bination of partners relate to the functions of the protein. Those distributions in metazoa are very different from those in other kingdoms because of complexity of metazoa. Finally the relationship between duplication and combination of p-loop containing NTP hydrolases superfamily in different genomes is described. It fits a power law.  相似文献   

16.
The origin of red algae and the evolution of chloroplasts   总被引:34,自引:0,他引:34  
Moreira D  Le Guyader H  Philippe H 《Nature》2000,405(6782):69-72
Chloroplast structure and genome analyses support the hypothesis that three groups of organisms originated from the primary photosynthetic endosymbiosis between a cyanobacterium and a eukaryotic host: green plants (green algae + land plants), red algae and glaucophytes (for example, Cyanophora). Although phylogenies based on several mitochondrial genes support a specific green plants/red algae relationship, the phylogenetic analysis of nucleus-encoded genes yields inconclusive, sometimes contradictory results. To address this problem, we have analysed an alternative nuclear marker, elongation factor 2, and included new red algae and protist sequences. Here we provide significant support for a sisterhood of green plants and red algae. This sisterhood is also significantly supported by a multi-gene analysis of a fusion of 13 nuclear markers (5,171 amino acids). In addition, the analysis of an alternative fusion of 6 nuclear markers (1,938 amino acids) indicates that glaucophytes may be the closest relatives to the green plants/red algae group. Thus, our study provides evidence from nuclear markers for a single primary endosymbiosis at the origin of these groups, and supports a kingdom Plantae comprising green plants, red algae and glaucophytes.  相似文献   

17.
To investigate the dynamics of phytoplankton size structure in the Pearl River estuary, concentrations of size-fractionated chlorophyll a (Chl a) were determined during four cruises carried out in 2008 and 2010. The distribution of Chl a in this geographical location showed a high degree of temporal variation. Chl a concentrations were highest in autumn, approximately three times higher than those in summer and winter. Microphytoplankton was the dominant contributor, accounting for 66.9% of the Chl a concentration in autumn 2008. In summer and spring 2008, nano-sized cells dominated the phytoplankton population throughout the study region. During the winter cruise, two different areas of water were found, characterized by (1) low salinity and high nutrient content and (2) high salinity and low nutrient content; nano- and picophytoplankton co-dominated the first area, while microphytoplankton dominated the second. It is arguable that grazing could have played a role in determining phytoplankton community size structure in winter. Nutrient concentrations were assumed not to limit phytoplankton growth during the investigation period. Size-differential capacity in competing for the resources available under different hydrodynamic conditions seemed to be the major factor in determining seasonal variation in the structure of the phytoplankton communities. High N:P ratios in the Pearl River estuary had major implications for nutrient pollution control. Our results indicated that studies of phytoplankton size structure provide greater insight into phytoplankton dynamics and are necessary to better manage water quality in the Pearl River estuary.  相似文献   

18.
A full-length cDNA of GlFtsZ was isolated by screening the cDNA library of Gentiana lutea. Analysis of the deduced amino acid sequence encoded by GlFtsZ indicated that GlFtsZ protein possesses the typical conservative motifs existed in all FtsZ proteins. The existence of putative plastid transit peptide in its N-terminus suggested that GlFtsZ might function inside of plastids. With the deve- lopmental process of petals of Gentiana lutea, the expression of plastid division gene GlFtsZ declined gradually, whereas the expression of carotenoids biosynthesis gene Zds increased obviously; meanwhile, in contrast to the increment of carotenoids, the content of chlorophyll in petals decreased sharply. The chloroplasts turned into chromoplasts, and the color of petals also turned from green to golden. All of these results suggested that the expression of GlFtsZ is accompanied with the development and differentiation of plastids.  相似文献   

19.
以两种紫红色和一种绿色生菜品种为材料,利用红蓝LED光源(4∶1)对3种不同类型的生菜进行处理,研究了红蓝LED光源(4∶1)对不同类型生菜生长及营养品质的影响.结果表明:红蓝LED光源处理后的生菜地上部和地下部鲜重均显著增加,地上部鲜重比对照的地上部鲜重增加了13.8%,地下部鲜重比对照地下部鲜重增加了25.6%;叶绿素含量最高提高了88.3%;同时红蓝LED光源处理后显著提高了生菜叶片中花青素和可溶性糖含量,可溶性糖含量最高比对照中增加了14.6倍,两种紫红色生菜品种花青素含量平均比对照中提高了5.8倍,有效提高了生菜的品质.同时,长时间红蓝LED处理后的生菜体内可溶性和总草酸含量没有显著改变,但硝态氮含量显著升高.  相似文献   

20.
C W dePamphilis  J D Palmer 《Nature》1990,348(6299):337-339
Photosynthesis is the hallmark of plant life and is the only plastid metabolic process known to be controlled by plastid genes. The complete loss of photosynthetic ability, however, has occurred on several independent occasions in parasitic flowering plants. Some of these plants are known to lack chlorophyll and certain photosynthetic enzymes, but it is not known to what extent changes have occurred in the genes encoding the photosynthetic apparatus or whether the plants even maintain a plastid genome. Here we report that the nonphotosynthetic root parasite Epifagus virginiana has a plastid chromosome only 71 kilobases in size, far smaller than any previously characterized land plant plastid genome. The Epifagus plastid genome has lost most, if not all, of the 30 or more chloroplast genes for photosynthesis and most of a large family of plastid genes, the ndh genes, whose products may be involved in a plastid respiratory chain. The extensive changes in Epifagus plastid gene content must have occurred in a relatively short time (5-50 x 10(6) yr), because Striga asiatica, a related photosynthetic parasite, has a typical complement of chloroplast genes for photosynthesis and chlororespiration. The plastid genome of Epifagus has retained transcribed ribosomal RNA and ribosomal protein genes, suggesting that it expresses one or more gene products for plastid functions not related to photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号