共查询到13条相似文献,搜索用时 77 毫秒
1.
以球形Ni(OH)2为核心原料,Al(NO3)3·9HzO、Co(NO3)2·6H2O和LiNO3为包裹原料,采用融盐包裹法在空气中煅烧合成了单相固溶体LiNi0.7Co0.2Al0.1O2。用XRD研究了合成产物的物相和结构,用SEM研究了合成产物的形貌,用电池性能测试仪研究了合成产物的电化学性能。实验结果表明,合成产物具有α-NaFeO2型层状有序结构、球状形貌和良好的电化学性能。 相似文献
2.
熔融盐法合成球形锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2 总被引:1,自引:1,他引:1
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系T-x相图,该体系的最低共熔点为175.7℃.利用低共熔混合物LiNO3-LiOH为锂盐,与前驱体球形Ni0.8Co0.2(OH)2混合烧结制备出了球形锂离子电池正极材料LiNi0.8Co0.2O2.探讨了Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的材料具有规整的层状NaFeO2结构,SEM表明所得材料为球形.充放电测试表明在3.0~4.3的电压范围内,首次放电比容量可达170 mAh.g-1,充放电效率为95.5%.结果表明采用该工艺可以制备出电化学性能良好的LiNi0.8Co0.2O2正极材料. 相似文献
3.
用2次干燥化学共沉淀法制得高密度前驱体Ni0.8Co0.2(OH)2,使之与LiOH.H2O混合经过2个恒温阶段烧结(600℃恒温6 h、850℃恒温24 h)得到LiNi0.8Co0.2O2材料,探讨了镍源、Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响,从而优化了LiNi0.8Co0.2O2的合成工艺.所得非球形LiNi0.8Co0.2O2粉末振实密度高达2.94 g/cm3,X射线衍射分析表明该材料具有规整的层状NaFeO2结构,充放电测试表明材料具有良好的电化学性能. 相似文献
4.
高密度球形LiNi_(0.8)Co_(0.2)O_2的制备及性能 总被引:6,自引:0,他引:6
采用控制结晶法合成球形 β- Ni0 .8Co0 .2 (OH) 2 ,与L i OH.H2 O 混合 ,在 75 0℃通 O2 热处理 8h 合成球形L i Ni0 .8Co0 .2 O2 粉末。用 X光衍射和扫描电镜分析对 β- Ni0 .8Co0 .2 (OH) 2 和 L i Ni0 .8Co0 .2 O2 粉末的结构进行了表征。充放电测试表明该球形 L i Ni0 .8Co0 .2 O2 正极材料具有优良的电化学性能 :首次充电比容量为 2 17m A.h.g- 1 ,放电比容量为172 m A.h.g- 1 ,5 0次充放电循环后保持初始放电比容量的97.5 %。该球形 L i Ni0 .8Co0 .2 O2 粉末的振实密度高达 2 .8g.cm- 3,远高于一般非球形 L i Ni0 .8Co0 .2 O2 正极材料。高密度球形 L i Ni0 .8Co0 .2 O2 正极材料用于锂离子电池可以显著提高电池的能量密度。 相似文献
5.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能 总被引:3,自引:0,他引:3
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径 相似文献
6.
研究了高温固相法合成锂离子电池正极材料LiNi0.8Co0.2O2时原材料、气氛、温度、时间、Li:(Ni Co)化学计量比例、氧气流量、二次烧结等参数对制备电极活性材料结构和电性能的影响,使用其优化后的工艺参数,制备出容量为170mAb/g的LiNi0.8Co0.2O2,并对此正极材料组成的电池性能进行了测试。 相似文献
7.
用包裹沉淀法合成了具有尖晶石结构的可用作锂离子二次电池正极材料的锂锰氧(LiMn2O4) 化合物.对材料进行了X射线衍射、循环伏安、充放电等测试,实验结果表明,所合成的材料具有标准尖晶石结构和较好的电化学可逆性能,该材料在ECDMC(1∶1,体积比) +1 mol/LLiPF6 电解液中表现出较优良的充放电性能,其放电容量达120 mAh/g. 相似文献
8.
采用高温固相法烧结制备得到正极材料Li Ni0.5Co0.2Mn0.3O2,通过X射线衍射(XRD)、扫描电镜(SEM)以及循环伏安(CV)、交流阻抗(EIS)等电化学性能测试手段,探讨高温烧结工艺中不同锂源对材料结构、形貌及电化学性能的影响,结果表明,采用Li OH作为锂源合成的材料与采用其他锂源相比,具有较好的层状结构和电化学性能.该材料在0.1C倍率下的首次充放电容量和库伦效率较高(172.7 m Ah/g,89.08%),在0.5C、1C倍率下循环50次后,材料的放电容量仍保持在144.5 m Ah/g和136.2 m Ah/g. 相似文献
9.
球形LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面非均匀成核法包覆Al_2O_3的研究 总被引:1,自引:0,他引:1
为了提高LiNi1/3Co1/3Mn1/3O2的电化学性能,采用非均匀成核法在球形LiNi1/3Co1/3Mn1/3O2表面包敷Al2O3。采用SEM及电化学性能测试对所制备材料的形貌和电化学性能进行表征。研究结果表明:球形LiNi1/3Co1/3Mn1/3O2颗粒由粒径为500~600 nm的一次粒子团聚而成,包敷后的球形LiNi1/3Co1/3Mn1/3O2表面形成了致密的无定形Al2O3包敷层;包覆Al2O3能明显抑制LiNi1/3Co1/3Mn1/3O2在循环过程中的氧化/还原峰电流的衰减,随着Al2O3包敷量的增加,材料的氧化/还原峰的峰电流减小,适量地包敷Al2O3可有效提高材料的可逆性;当Al2O3的包敷量为0.5%时,材料表现出优异的电化学性能,在2.7~4.6 V高电压和1C倍率条件下,材料的首次放电容量为172(mA.h)/g,50次循环后材料的容量保持率仍有93%,而没有包敷的LiNi1/3Co1/3Mn1/3O2容量略低,首次放电容量为170(mA.h)/g,而且容量衰减较快,容量保持率仅为84%。此外,包敷处理还可以有效提高LiNi1/3Co1/3Mn1/3O2材料在电解液中的热稳定性,以包敷材料所制备的电池其高温储存性能明显提高。 相似文献
10.
对LiC0.2Ni0.8O2正极材料的合成条件进行了研究.实验表明,该材料在空气气氛中合适的合成温度为700℃,反应时间为12h,在该反应条件下正极材料晶体结构有序化程度及晶体结构完善性均比较理想,其电化学性能较好.在通氧条件下制备得到的正极材料LiC0.2Ni0.8O2具有良好的电化学性能,其初始放电容量175mAh/g,经过50次充放电循环后放电容量为153mAh/g,而且正极材料中锂离子的扩散系数有了较大的增加,这有利于正极材料中锂离子的迁入和脱嵌,因此LiC0.2Ni0.8O2正极材料具有良好的充放电循环性能。 相似文献
11.
12.
《复旦学报(自然科学版)》2007,(5)
1 Introduction As a promising cathode material for lithium ion batteries,LiNi1/3Co1/3Mn1/3O2 attracted intensive attentions.Owing to high specific capacity,long circle life and excellent safety,it may be an alternative candidate for LiCoO2.As a complex composite,however,it is difficult to synthesize phase-pure LiNi1/3Co1/3Mn1/3O2 by a simple mixed calcination method[1].From this concern,carbonate co-precipitation method,which can prepare homogeneous LiNi1/3Co1/3Mn1/3O2 with typical layered structure,bec... 相似文献
13.
xLi2MnO3·(1-x)LiNi0.4Co0.2Mn0.4O2(x=0.5) powders were synthesized from co-precipitated spherical metal carbonate,Ni0.2Co0.1Mn0.533(CO3)x.It has been found that the preparation of metal carbonate was si... 相似文献