首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
采用Tersoff势对完美的和含空位缺陷的单层石墨烯薄膜的单向拉伸力学性能进行了分子动力学模拟,分别研究了单个单原子空位缺陷和单个双原子空位缺陷对扶手椅型和锯齿型石墨烯拉伸力学性能及变形机制的影响.研究结果表明,单原子空位缺陷和双原子空位缺陷对扶手椅型和锯齿型石墨烯薄膜的杨氏模量没有影响,但在一定程度上降低了拉伸强度和拉伸极限应变.单原子空位缺陷和双原子空位缺陷使拉伸强度降低幅度最高达8.10%和6.41%,并大幅度降低极限应变.缺陷对石墨烯的拉伸变形破坏机制也有一定的影响.在外载作用下,新的缺陷的萌生位置均出现在空位缺陷附近.  相似文献   

2.
采用Tersoff势对硅掺杂石墨烯薄膜的拉伸过程进行了分子动力学模拟,研究了不同硅掺杂比对扶手椅型和锯齿型石墨烯薄膜拉伸力学性能的影响,得到了相应的应力-应变关系以及拉伸破坏形态.研究结果表明,硅原子的替换掺杂对石墨烯薄膜杨氏模量的影响明显,其拉伸极限应变和拉伸强度随着硅原子掺杂比的增大而显著减小.  相似文献   

3.
在不同温度条件(0 K-3000K)下,采用AIREBO势函数对单层石墨烯薄膜的弛豫性能和拉伸性能进行分子动力学模拟,研究单层石墨烯在弛豫过程中温度效应对其原子结构的影响以及单层石墨烯在拉伸过程中力学性能与温度效应的关系.研究结果表明:单层石墨烯的弛豫性能和拉伸性能均对温度具有很强的依赖性.理想状态下,单层石墨烯的弛豫是一个原子结构的动态平衡过程,随着温度升高,石墨烯稳定性降低,弛豫过程中原子的波动起伏变得不规则和剧烈起来.在温度从0K上升到3000K的过程中,单层石墨烯的拉伸强度、拉伸极限应变和弹性模量值均呈现下降趋势,且锯齿型石墨烯的弹性模量对温度的依赖程度比扶手椅型大,薄膜的拉伸随温度变化表现出不同的破坏形态.  相似文献   

4.
为揭示复合材料在拉伸过程中的破坏机理,对石墨烯/碳化硅复合材料的拉伸力学性能进行了分子动力学模拟.研究结果表明:石墨烯与碳化硅接触的界面结构会影响复合材料的整体力学性能;相较于纯碳化硅,石墨烯/碳化硅复合材料在拉伸时,损伤更容易在界面处成核并生长;当石墨烯与碳化硅通过不同界面接触时,石墨烯与基底之间的不同相互作用使复合材料有不同的力学性能,相较于石墨烯直接与碳化硅的C表面接触,当石墨烯与Si原子接触时复合材料有更高的强度和失效应变.  相似文献   

5.
采用Tersoff势对扶手椅型(Armchair)和锯齿型(Zigzag)单层石墨烯薄膜在不同热力学温度下(0~3 000 K)的单向拉伸力学性能进行了分子动力学模拟,预测了石墨烯薄膜拉伸力学性能对温度的依赖性,并比较了不同温度条件下相同几何尺寸的扶手椅型和锯齿型单层石墨烯薄膜拉伸力学性能的差异.结果表明:石墨烯薄膜的拉伸力学性能和变形机制对温度有强烈的依赖性,2种不同手性的单层石墨烯薄膜的杨氏模量、抗拉强度、拉伸极限应变均随温度的升高而显著减小.石墨烯薄膜力学性能的各向异性也受温度的影响,当温度低于600 K时,扶手椅型石墨烯薄膜的力学性能优于锯齿型的;但当温度超过600 K时,特别是高温时,扶手椅型薄膜的力学性能的优势逐渐减弱,甚至低于锯齿型的.  相似文献   

6.
锂离子电池中硅基负极材料具有极高理论容量和低充放电电压平台,作为代替石墨的最佳负极材料,成为当下研究中热门的锂电池负极材料。设计中空硅球/石墨烯复合材料,H-Si球与氧化石墨烯水热条件下形成三维多孔石墨烯气凝胶内嵌硅球复合物(H-Si/GA),H-Si球与聚二烯丙基二甲基氯化铵(poly dimethyl diallyl ammonium,PDDA)功能化的氧化石墨烯溶剂热条件下静电吸附形成包覆状复合物(H-Si/G)。借助结构表征和电性能测试,硅球与石墨烯紧密包覆状的H-Si/G展示出更佳的电性能。中空硅球由于静电吸附作用嵌入石墨烯纳米片中,石墨烯牢牢固定硅球,构建了稳定的导电通道,缓冲体积膨胀,并保持电极结构稳定。硅球内部的空隙空间为体积膨胀预留足够缓冲空间,缩短了电子和离子传输通道。  相似文献   

7.
薄膜沉积过程的分子动力学模拟   总被引:1,自引:0,他引:1  
应用嵌入原子势作为势函数,对薄膜沉积过程进行分子动力学模拟,来模拟不同工艺条件下的成膜过程、薄膜质量及各参数变化对成膜的影响.结果表明,衬底温度越高,则原子在薄膜表面的扩散能力越强,薄膜内部的空位密度越小.但衬底温度对薄膜质量的影响只在一定范围内比较明显;原子自身携带的能量越高,则其扩散能力也越强,特别是在衬底温度较低时,这项影响越大;随着原子入射角的增大,薄膜表面的纤维状生长及阴影响应越明显,薄膜的质量则明显下降.  相似文献   

8.
利用分子动力学方法研究了不同剂量的碳离子辐照石墨烯产生损伤后对其拉伸力学性能的影响,包括应力应变曲线、杨氏模量以及拉伸强度等。入射离子能量为1 keV,入射剂量分别为2.00×1013,6.01×1013,1.00×1014和2.00×1014cm 2。结果表明,离子辐照后产生了单空位缺陷、双空位缺陷及复杂缺陷等,这些缺陷对石墨烯的力学性能产生了显著影响,如剂量为2.00×1013cm 2时,石墨烯中只存在两个单空位缺陷,但与完美石墨烯相比,杨氏模量却从780.19 GPa减小到128.77 GPa,拉伸强度也从161.81 GPa变为30.85 GPa,并且缺陷个数越多,力学性能越差。另外,对辐照导致样品变形以及断裂的物理机制也进行了讨论。  相似文献   

9.
采用分子动力学方法和嵌入原子法(EAM)多体势函数,模拟研究了银纳米杆能量分布特征在不同温度直到熔化过程中的变化。结果显示:纳米杆中原子的势能分布曲线呈现多个分立的峰;随着温度的变化,分布曲线各个峰的位置保持不变,但峰高和峰宽明显变化;纳米杆熔化后这种能量分布特征完全消失,只有一个宽化的峰。模拟结果分析表明:纳米杆中原子势能分布曲线中每个峰对应于一定的最近邻原子数,纳米杆中每个原子的势能所处峰位由其最近邻原子数决定,偏离峰值程度则由其次近邻原子数决定。  相似文献   

10.
基于分子动力学方法,用Tersoff势函数描述碳原子性质,研究了手性取向对石墨烯薄膜拉伸力学性能的影响。通过构建不同手性的石墨烯薄膜模型,在周期性边界条件下采用NVT系综,以变形方式分别对不同手性的石墨烯薄膜施加均匀应变,模拟了拉伸变形条件下手性石墨烯薄膜的破坏过程,得到了相应的应力-应变关系以及拉伸破坏形态。结果表明,不同的手性取向对石墨烯薄膜的杨氏模量影响不明显,拉伸强度随着手性角度的增大先迅速减小再逐渐增大,其拉伸极限应变随着手性角度的增大整体呈减小趋势。  相似文献   

11.
利用分子动力学方法研究了不同剂量的碳离子辐照石墨烯产生损伤后对其拉伸力学性能的影响, 包括应力?应变曲线、杨氏模量以及拉伸强度等。入射离子能量为1 keV, 入射剂量分别为2.00×1013, 6.01×1013, 1.00×1014 and 2.00×1014cm-2。结果表明, 离子辐照后产生了单空位缺陷、双空位缺陷及复杂缺陷等, 这些缺陷对石墨烯的力学性能产生了显著影响, 如剂量为2.00×1013cm-2时, 石墨烯中只存在两个单空位缺陷, 但与完美石墨烯相比, 杨氏模量却从780.19 GPa减小到128.77 GPa, 拉伸强度也从161.81 GPa变为30.85 GPa, 并且缺陷个数越多, 力学性能越差。另外, 对辐照导致样品变形以及断裂的物理机制也进行了讨论。  相似文献   

12.
基于分子动力学方法,采用Tersoff势函数,研究了含中心裂纹扶手椅型单层石墨烯薄膜的破坏过程.得到了相应的应力-应变曲线及破坏形态,分析了裂纹尺寸、应变率以及温度变化对含中心裂纹石墨烯薄膜拉伸力学性能的影响.研究结果表明:随着裂纹尺寸的增大及温度的升高,石墨烯薄膜的破坏强度和破坏应变均减小,裂纹开始扩展时对应的应力减小;随着应变率增大,石墨烯薄膜的破坏强度和破坏应变均增加,裂纹的起裂应力及扩展过程中的平均速度均增加;薄膜的破坏均是从中心裂纹附近开始,随着裂纹尺寸、应变率及温度的变化,石墨烯薄膜表现出不同的破坏机制;较高应变率作用下,薄膜中心和边缘处均出现C—C键断裂.  相似文献   

13.
在热电材料里引入纳孔能有效降低材料的热导率从而提高其热电性能,但纳米孔洞的引入也可能影响材料的力学性能。以圆柱孔理想单晶Mg_2Si块体热电材料为研究对象,建立不同孔径、孔隙率以及分布形式的纳孔Mg_2Si材料的原子模型,采用分子动力学模拟方法研究不同模型下材料的拉伸力学性能。结果表明:①纳孔的引入造成Mg_2Si热电材料的极限应力和弹性模量的降低,而纳孔孔隙率、分布形式都会影响到材料的极限应力,而材料的弹性模量主要与孔隙率有关,孔隙率越大,材料的弹性模量越低;②纳孔的引入不仅减小材料的有效荷载面积,更重要的是造成材料内部应力分布不均匀,而材料所能承受的拉伸方向的应力极限是一定的,因而当纳孔Mg_2Si热电材料平均应力远小于完整块体的极限应力时,材料内部最薄弱的地方的应力就已达到其极限应力,造成材料的破坏。  相似文献   

14.
采用分子动力学和EAM势函数,建立了金属Fe固液两相模型,实现了液态金属Fe在两种不同冷却速率下的凝固过程,用以模拟激光束对金属Fe的处理。通过原子势能、径向分布函数、共同近邻分析和原子构型演化等计算方法,研究了体系演化过程和终态结构特性,得到了在冷却速率为2 K/ps和5 K/ps时固液分界面稳定传播速度分别为1.74 m/(s·K)和0.89m/(s·K);在终态时由于无序原子的存在,原固液分界面处存在能量起伏,同时在原液态部分发现了高能态的原子团簇,为研究经激光束处理后的金属Fe的力学性能提供了微观结构基础。  相似文献   

15.
根据SGTE数据库的晶格稳定参数和Debye-Gruneisen模型,运用纯金属单原子(OA)理论研究了面心立方和亚稳液相Cu的原子状态、原子势能、原子动能、原子体积、体弹性模量和热膨胀系数等物理参数随温度的变化关系。研究结果表明:电子结构计算结果与采用第一原理方法所得的结果一致;单键半径,原子动能和原子势能随温度上升而增加;线热膨胀系数计算值与实验值较吻合;固液相变时,Liquid-Cu的自由电子和共价电子均向非键电子转移,共价d电子向共价s电子转移,电子结构的转变降低液相的导电性,削弱液相原子配位的方向性,引起原子单键半径和体积增大。  相似文献   

16.
为了提高锂离子电池锡基负极材料的比容量,以SnCl_4·5H_2O和石墨烯为原料,通过气相沉积法和高温烧结制备了SnO_2/石墨烯复合材料,并研究了不同烧结温度对SnO_2/石墨烯复合材料电化学性能的影响. SnO_2颗粒沉积并嵌入在石墨烯的层间,石墨烯的层状结构能够缓冲SnO_2的体积膨胀,进而有效提高材料的循环稳定性.利用电子扫描显微镜、X线能谱和X线衍射等表征方法和循环伏安等电化学性能测试方法对材料进行表征和分析.结果表明:当烧结温度为400℃时,材料的电化学性能最好,在电流密度为100 mA/g时,充放电循环50周后,其放电比容量仍能保持在716.6 mA·h/g;在电流密度为1 A/g时,放电比容量为431.9 mA·h/g.因此,该材料在商用锂离子电池领域具有潜在的应用前景.  相似文献   

17.
采用分子动力学方法研究含有表面缺陷的氮化镓材料的二次外延生长过程,探讨生长温度,表面缺陷数量和缺陷结构等对二次生长材料质量的影响.发现当在生长表面随机引入3.125%占比的空位缺陷且生长温度在1 373 K以上时,对材料质量的影响不明显;当随机引入12.5%占比的空位缺陷时,可以改善二次生长材料的质量;当在生长表面上引入12.5%占比的2个六边形结构空位缺陷时,缺陷区域出现大量原子的岛状生长,同时原子排列变得无序,二次生长的材料生长质量明显劣化.  相似文献   

18.
利用递归格林函数方法研究存在体空位时之字型边界石墨烯纳米带的电子输运性质。研究结果表明,纳米带的电导对体空位非常敏感。当体系存在一个单原子空位时,电导受到明显的压制,完美的量子化台阶消失。同时在费米能处存在一个电导沟;当体系存在一个双原子空位时,电导压制亦非常明显,但电导沟存在于第一能带带边处。局域态密度分析结果显示,电导沟的形成是因为电子态局限在体空位周围,不能形成有效的电子通道,从而导致体系电导下降。另外,当存在两个随机分布的单原子空位时,体系的电导存在共振透射峰,透射峰的数目随着两个体空位之间的距离改变而改变。计算结果发现,体空位之间的距离每增加3个超原胞,电导将会增加一个透射峰。  相似文献   

19.
利用嵌入原子法(EAM)势函数,通过分子静态弛豫方法NiAl合金中各种点缺陷的形成能进行了模拟计算。结果表明,从点缺陷的形成能来看,在NiAl晶格中很难形成Ni反位置缺陷,而Al原子亚点阵位置总是被占据。当合金富Ni时,Ni占据Al位置形成Al的反位置缺陷;当合金富Al时,形成Ni空位。点缺陷周围原子的位移情况及双空位形成能与空位之间间距的关系的研究表明,随着两个空位之间距离的增大,其交互作用逐渐  相似文献   

20.
通过高温拉伸实验研究超高强度钢BR1500HS不同变形参数对真应力-真应变曲线及抗拉强度的影响,并采用光学显微镜观察不同变形参数下的微观结构,利用扫描电子显微镜SEM分析所得材料的断口形貌。研究结果表明:不同变形参数对抗拉强度、流变应力的影响规律不同,增大变形温度或减小应变速率均可减小材料流变应力;当变形温度在800~900℃时,其材料流变抗力小、塑性好,有利于成形;在相同应变速率条件下,当变形温度区间为300~400℃,500~700℃以及800℃以上时,其微观结构组织分别主要为马氏体、贝氏体以及奥氏体;在相同应变速率下,当变形温度区间为300~400℃和500~900℃时,其断裂方式分别为脆性断裂、韧性断裂,且在800~900℃时,其韧窝断口形貌较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号