首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lunde C  Jensen PE  Haldrup A  Knoetzel J  Scheller HV 《Nature》2000,408(6812):613-615
Photosynthesis in plants involves two photosystems responsible for converting light energy into redox processes. The photosystems, PSI and PSII, operate largely in series, and therefore their excitation must be balanced in order to optimize photosynthetic performance. When plants are exposed to illumination favouring either PSII or PSI they can redistribute excitation towards the light-limited photosystem. Long-term changes in illumination lead to changes in photosystem stoichiometry. In contrast, state transition is a dynamic mechanism that enables plants to respond rapidly to changes in illumination. When PSII is favoured (state 2), the redox conditions in the thylakoids change and result in activation of a protein kinase. The kinase phosphorylates the main light-harvesting complex (LHCII) and the mobile antenna complex is detached from PSII. It has not been clear if attachment of LHCII to PSI in state 2 is important in state transitions. Here we show that in the absence of a specific PSI subunit, PSI-H, LHCII cannot transfer energy to PSI, and state transitions are impaired.  相似文献   

2.
Cyclic electron flow around photosystem I is essential for photosynthesis   总被引:4,自引:0,他引:4  
Photosynthesis provides at least two routes through which light energy can be used to generate a proton gradient across the thylakoid membrane of chloroplasts, which is subsequently used to synthesize ATP. In the first route, electrons released from water in photosystem II (PSII) are eventually transferred to NADP+ by way of photosystem I (PSI). This linear electron flow is driven by two photochemical reactions that function in series. The cytochrome b6f complex mediates electron transport between the two photosystems and generates the proton gradient (DeltapH). In the second route, driven solely by PSI, electrons can be recycled from either reduced ferredoxin or NADPH to plastoquinone, and subsequently to the cytochrome b6f complex. Such cyclic flow generates DeltapH and thus ATP without the accumulation of reduced species. Whereas linear flow from water to NADP+ is commonly used to explain the function of the light-dependent reactions of photosynthesis, the role of cyclic flow is less clear. In higher plants cyclic flow consists of two partially redundant pathways. Here we have constructed mutants in Arabidopsis thaliana in which both PSI cyclic pathways are impaired, and present evidence that cyclic flow is essential for efficient photosynthesis.  相似文献   

3.
Bundock P  Hooykaas P 《Nature》2005,436(7048):282-284
A significant proportion of the genomes of higher plants and vertebrates consists of transposable elements and their derivatives. Autonomous DNA type transposons encode a transposase that enables them to mobilize to a new chromosomal position in the host genome by a cut-and-paste mechanism. As this is potentially mutagenic, the host limits transposition through epigenetic gene silencing and heterochromatin formation. Here we show that a transposase from Arabidopsis thaliana that we named DAYSLEEPER is essential for normal plant growth; it shares several characteristics with the hAT (hobo, Activator, Tam3) family of transposases. DAYSLEEPER was isolated as a factor binding to a motif (Kubox1) present in the upstream region of the Arabidopsis DNA repair gene Ku70. This motif is also present in the upstream regions of many other plant genes. Plants lacking DAYSLEEPER or strongly overexpressing this gene do not develop in a normal manner. Furthermore, DAYSLEEPER overexpression results in the altered expression of many genes. Our data indicate that transposase-like genes can be essential for plant development and can also regulate global gene expression. Thus, transposases can become domesticated by the host to fulfil important cellular functions.  相似文献   

4.
Reinfelder JR  Kraepiel AM  Morel FM 《Nature》2000,407(6807):996-999
Nearly 50 years ago, inorganic carbon was shown to be fixed in microalgae as the C3 compound phosphoglyceric acid. The enzyme responsible for C3 carbon fixation, ribulose-1,5-bisphosphate carboxylase (Rubisco), however, requires inorganic carbon in the form of CO2 (ref. 2), and Rubisco enzymes from diatoms have half-saturation constants for CO2 of 30-60 microM (ref. 3). As a result, diatoms growing in seawater that contains about 10 microM CO2 may be CO2 limited. Kinetic and growth studies have shown that diatoms can avoid CO2 limitation, but the biochemistry of the underlying mechanisms remains unknown. Here we present evidence that C4 photosynthesis supports carbon assimilation in the marine diatom Thalassiosira weissflogii, thus providing a biochemical explanation for CO2-insensitive photosynthesis in marine diatoms. If C4 photosynthesis is common among marine diatoms, it may account for a significant portion of carbon fixation and export in the ocean, and would explain the greater enrichment of 13C in diatoms compared with other classes of phytoplankton. Unicellular C4 carbon assimilation may have predated the appearance of multicellular C4 plants.  相似文献   

5.
Julian M Hibberd  W Paul Quick 《Nature》2002,415(6870):451-454
Most plants are known as C3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C4 photosynthesis evolved first. Here we report that tobacco, a typical C3 plant, shows characteristics of C4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C4 photosynthesis in cells around the vascular bundles of stems of C3 plants might explain why C4 photosynthesis has evolved independently many times.  相似文献   

6.
The plastid clpP1 protease gene is essential for plant development   总被引:1,自引:0,他引:1  
Kuroda H  Maliga P 《Nature》2003,425(6953):86-89
  相似文献   

7.
When the NifA-mediated activation of Klebsiella pneumoniae nifU promoter is recreated in Escherichia coli, it has been observed that CRP-cAMP has an inhibitory effect on the nifU promoter. Sequence analysis indicates that there is a strong CRP-binding site located upstream of the nifU promoter, overlapping completely with a previously identified NifA-binding site. In vitro gel retardation analysis indicates that this putative CRP-binding site has similar affinity for CRP, when compared with that at the lac promoter, suggesting that CRP could effectively compete with NifA for such a binding site under physiological conditions. When this putative CRP-binding site on nifU was mutated, in vitro gel retardation analysis indicates that CRP can no longer bind to the mutant promoter. However, when constitutively expressed NifA is used as the activator, CRP-cAMP-mediated inhibitory effect on this mutant nifU promoter has no significant difference when compared with that obtained from its wild-type promoter. These results suggest that direct interaction between CRP and Eσ54, other than the DNA binding site(s) competition between CRP and NifA, plays the principal role in the CRP-cAMP-mediated inhibitory effect on nifU.  相似文献   

8.
A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.  相似文献   

9.
Côté M  Misasi J  Ren T  Bruchez A  Lee K  Filone CM  Hensley L  Li Q  Ory D  Chandran K  Cunningham J 《Nature》2011,477(7364):344-348
Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.  相似文献   

10.
G J Pielak  A G Mauk  M Smith 《Nature》1985,313(5998):152-154
Phenylalanine 87 of yeast iso-1-cytochrome c (Phe 82 in horse heart and bonito) is phylogenetically conserved and occurs near the surface of the protein. It has been suggested that this residue is directly involved in electron transfer between cytochrome c and cytochrome c peroxidase (CCP) and may also control the polarity of the haem environment. Because Phe residues are not susceptible to chemical modification, no direct means of studying the functional role of Phe 87 has been available, so we have chosen Phe 87 as our initial target here to test the feasibility of using site-directed mutagenesis as a means of studying structure-function relationships in cytochrome c. We have changed the codon for Phe 87 to that of either a Ser, a Tyr or a Gly. The mutated genes have been introduced into a yeast strain lacking both isozymes of cytochrome c. Unlike the recipient strain, transformants grow on a non-fermentable carbon source, indicating that the mutant proteins can reduce cytochrome oxidase. The purified mutant proteins are similar to wild type with respect to their visible spectra, 20-70% as active as wild-type protein in the CCP assay, and their reduction potentials are lowered by as much as 50 mV. Thus Phe 87 is not essential for cytochrome c to transfer electrons but is involved in determining the reduction potential.  相似文献   

11.
12.
Fibulin-5/DANCE is essential for elastogenesis in vivo.   总被引:19,自引:0,他引:19  
The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-beta-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins alphavbeta3, alphavbeta5 and alpha9beta1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.  相似文献   

13.
H-2 linked Ss protein is C4 component of complement.   总被引:12,自引:0,他引:12  
  相似文献   

14.
Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.  相似文献   

15.
Lysyl oxidase is essential for hypoxia-induced metastasis   总被引:1,自引:0,他引:1  
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.  相似文献   

16.
ICOS is essential for effective T-helper-cell responses   总被引:60,自引:0,他引:60  
The outcome of T-cell responses after T-cell encounter with specific antigens is modulated by co-stimulatory signals, which are required for both lymphocyte activation and development of adaptive immunity. ICOS, an inducible co-stimulator with homology to CD28, is expressed on activated, but not resting T cells, and shows T-cell co-stimulatory function in vitro. ICOS binds specifically to its counter-receptor B7RP-1 (refs 5,6,7), but not to B7-1 or B7-2. Here we provide in vivo genetic evidence that ICOS delivers a co-stimulatory signal that is essential both for efficient interaction between T and B cells and for normal antibody responses to T-cell-dependent antigens. To determine the physiological function of ICOS, we generated and characterized gene-targeted ICOS-deficient mice. In vivo, a lack of ICOS results in severely deficient T-cell-dependent B-cell responses. Germinal centre formation is impaired and immunoglobulin class switching, including production of allergy-mediating IgE, is defective. ICOS-deficient T cells primed in in vivo and restimulated in vitro with specific antigen produce only low levels of interleukin-4, but remain fully competent to produce interferon-gamma.  相似文献   

17.
Acquired immune deficiency syndrome (AIDS) is characterized by opportunistic infections and by 'opportunistic neoplasms' (for example, Kaposi's sarcoma). Persistent generalized lymphadenopathy (PGL) is epidemiologically associated with AIDS, especially in male homosexuals. A subset of T lymphocytes positive for the CD4 antigen (also termed T4 antigen), is depleted in AIDS and PGL patients. A retrovirus found in T-cell cultures from these patients is strongly implicated in the aetiology of AIDS because of the high frequency of isolation and the prevalence of specific antibodies in the patients. Here we have detected cell-surface receptors for the AIDS retrovirus (human T-cell leukaemia virus-III (HTLV-III) and lymphadenopathy-associated virus-1 (LAV-1) isolates) by testing the susceptibility of cells to infection with pseudotypes of vesicular stomatitis virus bearing retroviral envelope antigens, and by the formation of multinucleated syncytia on mixing virus-producing cells with receptor-bearing cells. Receptors were present only on cells expressing CD4 antigen; among 155 monoclonal antibodies tested, each of the 14 anti-CD4 antibodies inhibited formation of syncytia and blocked pseudotypes. Productive infection of CD4+ cells with HTLV-III or LAV-1 markedly reduced cell-surface expression of CD4. In contrast, receptors for HTLV-I and HTLV-II were not restricted to CD4+ cells, were not blocked by anti-CD4 antibodies; cells productively infected with HTLV-I and HTLV-II expressed surface CD4. Hence, we conclude that the CD4 antigen is an essential and specific component of the receptor for the causative agent of AIDS.  相似文献   

18.
濒危植物银缕梅幼苗对不同光强的光合响应   总被引:2,自引:0,他引:2  
在不同光照强度处理下(100 %、50 %和5 %自然光强),测定了濒危植物银缕梅幼苗叶片光合生理及其相应的形态指标,以探讨银缕梅幼苗叶片光合功能执行及叶形态建成在不同光照条件下的响应趋势。结果表明:银缕梅幼苗最大净光合速率(Pn,max)、光饱和点(LSP)和光补偿点(LCP)随着光强下降而显著降低,表明当年生新叶在一定程度上能够利用低强度光。全光强下银缕梅幼苗虽然具有较高的净光合速率,但其非光化学猝灭系数(NPQ)同样显著高于弱光下的幼苗,表明在幼苗建成阶段其强光利用能力较低,需要通过增加热耗散以散发过剩的光能。50 %光强下的银缕梅幼苗叶片的比叶面积(SLA)显著高于5 %及100 %光强下幼苗叶片的SLA,并且单株产叶数显著增加,说明在中等遮荫条件下银缕梅幼苗可进行有效的光合功能执行,并在形态建成方面表现出积极的响应。5 %光强下银缕梅幼苗的SLA最低,但单位面积及单位干质量的叶绿素含量均显著高于50 %与全光照下幼苗的相应指标。银缕梅幼苗在光合功能执行以及叶形态建成等方面对低光环境所表现出的适应策略,较好地解释了自然种群中幼树(幼苗)个体占据绝对优势的现象。但作为典型的阳生性树种,生长后期的光资源限制则可能导致植株处于“光饥饿”的压制状态,严重限制其种群更新。光环境的改善将直接促使幼树(幼苗)从光制约状态释放出来,以利于银缕梅种群的顺利更新。  相似文献   

19.
20.
Sortilin (approximately 95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号