共查询到14条相似文献,搜索用时 78 毫秒
1.
Ti45Al8Nb2Mn0.2B铸造合金高温形变行为 总被引:2,自引:0,他引:2
Ti45Al8Nb2Mn0.2B铸造合金在900~1200℃温度范围,1~10-3/s应变速率条件下进行压缩实验,研究其变形特点以及组织变化.结果发现,形变过程中合金的真应力-真应变曲线上存在一个应力峰值,随后流变应力随着应变量的增加逐渐下降并趋于稳态流变.降低温度和提高应变速率都使合金的应力峰值增加.在实验温度范围内合金的应变速率敏感系数为0.10~0.24;在高温形变过程中发生动态再结晶,合金的组织得到明显细化.再结晶晶粒尺寸随温度的降低和应变速率的增加而减小,也就是随Zener-Hollomonc参数的增加而减小;升高形变温度和降低应变速率均促进再结晶过程. 相似文献
2.
通过粉末冶金法制备了化学成分为Ti–45Al–10Nb的高Nb含量的TiAl合金,并研究了其在850、900和950°C下的抗氧化性能。根据氧化皮形貌和微观结构演变分析,讨论了高温下的抗氧化机理。850°C和900°C的氧化皮结构相似,TiO2+Al2O3混合物覆盖在弥散分布TiO2+Nb2O5的基体层。在950℃时,氧化皮从外部到母体金属分为四层:疏松的TiO2+Al2O3层、致密的Al2O3层、致密的TiO2+Nb2O5层和弥散分布TiO2+Nb2O5的基体层。Nb层抑制了Ti原子的向外扩散,阻碍了TiO2的生长,同时促进形成连续的Al2O3保护层,使合金具有长期的高温抗氧化能力。 相似文献
3.
采用溶-凝胶法制备Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3陶瓷粉末,以传统陶瓷制备工艺制备Mg元素掺杂的Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3陶瓷.研究MgO掺杂量为1.6%(质量分数)时,MgO固相掺杂和Mg计湿化学法掺杂两种不同的掺杂方式对Mg掺杂的Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3陶瓷显微结构及电学性能的影响.研究结果表明,当Mg掺杂量相同时,掺杂方式对Mg掺杂的Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3。陶瓷的显微结构和电学特性有显著的影响,相比纯的Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3陶瓷,两种掺杂方式中,Mg2+湿化学法掺杂相对于MgO固相掺杂,在BSZT陶瓷中的分布更均匀,替位程度更高,所以其对介电常数的影响也相对更大.而MgO固相掺杂相对于Mg2+湿化学法掺杂明显地促进了陶瓷晶粒的生长,提高了陶瓷的致密性,同时其击穿电场和电阻率也有较大提高.1350℃下烧结的固相MgO掺杂的Mg:Ba0.3Sr0.7Zr0.18Ti0.82O3陶瓷性能较优,介电常数约为590,介电损耗低于0.0005,电阻率为7.78×10^13Ω·mm,击穿场强为6.56kV/mm. 相似文献
4.
研究了ZnO—B2O3-Na2O(ZBN)玻璃及B2O3复合掺杂对陶瓷的烧结性能及微波介电特性的影响.研究表明,在990℃,掺入质量分数3wt%ZBN+0.7wt%B2O3,陶瓷微波介电性能最佳:εt=31.8,Qf=13230GHz,τf=-5.2ppm/℃. 相似文献
5.
阐述了Mn4+离子掺杂的复合氟化物A2BF6(A:K,Na,Cs;B:Si,Ge,Sn,Ti)红色荧光粉的制备方法以及此类材料结构性能和光学性能。氟化物具有低声子能量、高熔点、物相稳定等特点,而低声子能量的特点能够减少离子激发态的猝灭,提高发光效率[1]。Mn4+离子的3d-3d跃迁明显受晶体场的影响。 相似文献
6.
通过高温压缩热模拟实验,研究了50Mn18Cr4V高锰无磁钢在变形温度为900~1100℃、应变速率为01~10s-1条件下的热变形行为.结果表明,VC第二相的应变诱导析出对50Mn18Cr4V的热变形行为产生重要影响.当变形温度为900~1000℃,应变速率为5s-1时,VC第二相不能充分析出,与应变速率为1s-1相比,对动态再结晶的阻碍作用减弱.应尽量使实验钢在高温段完成热加工,并适当提高应变速率.随着变形温度降低到950℃以下,材料的塑性变差,若以较低的应变速率变形,容易造成晶界开裂;应变速率过高,容易造成流变失稳,因此,以5s-1的应变速率变形,较为适宜.确定了50Mn18Cr4V无磁钢的再结晶激活能为7769kJ/mol.通过实验数据回归,建立了实验钢的高温变形抗力模型. 相似文献
7.
高颖颖 《上海理工大学学报》2016,37(1):20-23
采用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ag合金进行热压缩试验,研究了Cu-Cr-Zr-Ag合金在不同应变速率和变形温度的流变应力行为、微观组织演变和动态再结晶机制,利用光学显微镜(OM)研究了Cu-Cr-Zr-Ag合金的压缩速率、形变温度对合金微观织构的影响.结果表明:在压缩速率为0.001~10 s-1的区间内,Cu-Cr-Zr-Ag合金存在近稳态流变特征,即流变应力随温升及压缩速率的降低而变小.形变温度越高,越能促使再结晶形核,压缩速率越低,越利于动态再结晶充分发生. 相似文献
8.
研究了中等含量的钛、锰或铌对Fe-25Cr合金预氧化层在高温硫化环境中保护怀的影响,实验结果发现:所有合金在1000℃、10^5PaO2中经不同时间预氧化后的硫化出现了增重缓慢的保护性硫化阶段,之后试样迅速增重,加w(Ti)=4%使合金形成了略厚的TiO和TiCr2O4混合氧化层,使保护性阶段加长了约1倍,而加w(Mn)=9%的合金却形成了多孔的以MnO和MnCr2O4尖晶石相为主的混合氧化层,保 相似文献
9.
通过单道次压缩实验,研究了屈服强度390 MPa级Ti微合金化高强钢的热变形行为,并建立了实验钢的变形抗力模型和动态再结晶数学模型.结果表明:随着变形温度的降低,变形抗力逐渐增大;随着应变速率的增大,应力-应变曲线由动态再结晶型转变为动态回复型.Q390钢的动态再结晶激活能为257.142 k J/mol.建立的高精度的数学模型可表征Ti微合金化Q390钢的高温变形行为.与常规成分体系相比,Ti微合金化成分设计的实验钢轧制时所需的轧制力较小,更容易发生动态再结晶,有利于奥氏体晶粒的细化,可有效地提高钢材强韧性. 相似文献
10.
采用Gleeble-1500D热力模拟试验机对具有铸态和预锻态初始组织的新型Al-Zn-Mg-Cu高强铝合金试样进行了热压缩试验,分析了该合金铸态和锻态初始组织在热变形过程中的演变。研究结果表明,高温低应变速率条件下,铸态树枝晶粒在热压缩变形拉长的同时,晶内树枝晶界在高温压缩扩散的作用下逐渐消失,转变为粗大均匀且变形拉长的晶粒组织。当压缩变形量很大时,剧烈拉长的晶粒将通过几何动态再结晶得到细化。预锻态试样压缩过程中,适当的温度和应变速率条件下即可发生动态再结晶,形成细小均匀的再结晶新晶粒。 相似文献
11.
利用MMS-300热模拟试验机,对20Mn2SiV非调质钢在变形温度为900~1 100℃及应变速率为0.01~10s-1条件下的流变应力进行了研究,讨论了Z参数与动态再结晶之间的关系,并建立了该钢的热变形流变应力模型.结果表明:采用Z参数可以判断动态再结晶发生与否,当lnZ≤32.76时,20Mn2SiV非调质钢发生动态再结晶;根据动态再结晶发生与否以及应变是否达到动态再结晶临界应变值,分别建立了不同情况下的流变应力模型,模型拟合效果良好. 相似文献
12.
采用透射电子显微术研究了Al67Mn8Ti25金属间化合物高温拉伸变形后的显微组织.结果表明,该合金在1173K和8.35×10-5s-1条件下的塑性变形过程是以动态回复为主,变形后晶粒内存在较高密度的位错、位错墙和位错网络;而在1173K及3.34×10-5s-1条件下合金则发生了动态再结晶,变形后的组织为动态再结晶形成的新晶粒,晶粒内包含有稳定的亚晶界.Al67Mn8Ti25合金高温塑性变形是一典型的速率控制过程.由于该合金中的位错运动及与原子扩散有关的过程进行较为困难,故只有在足够高的温度和低的应变速率条件下才发生动态回复和动态再结晶,同时合金获得较高的拉伸塑性. 相似文献
13.
1420Al-Li合金高温塑性变形沿晶断裂行为分析 总被引:1,自引:0,他引:1
Al Li合金的工艺塑性较低 ,存在高温沿晶脆性断裂现象 ,其断裂机制至今国内外都未进行系统的研究。采用Gleeble 150 0热模拟试验机 ,对铸态 142 0Al Li合金在变形温度t为 350~ 4 50℃、应变速率 ε为 0 .0 1~ 10s- 1的条件下 ,进行了高温拉伸热模拟实验研究。在实验基础上 ,研究了 142 0Al Li合金的高温拉伸断裂行为。结果表明 ,随着变形温度和应变速率的提高 ,142 0Al Li合金高温拉伸断裂模式由典型的穿晶韧性断裂转变为沿晶脆性断裂。研究说明 ,氢是引起 142 0Al Li合金高温沿晶脆性断裂的根本原因 ,并对 142 0Al Li合金高温氢致断裂的机理进行了探讨 ,提出了“高温氢脆是由于动力和静力二者综合作用的结果”的观点 ,丰富和发展了氢脆理论。 相似文献
14.