共查询到20条相似文献,搜索用时 15 毫秒
1.
田晓 《内蒙古师范大学学报(自然科学版)》2006,35(1):62-65
采用熔体快淬法在不同快淬速度下制备了Nd8Fe86B6合金中Nd2Fe14B/α-Fe双相复合纳米晶薄带.用X射线衍射仪(XRD)和振动样品磁强计(VSM)测量了薄带的相结构和磁性能.结果表明:Nd8Fe86B6合金的最佳快淬速度为18m/s,在此条件下制备的合金薄带平均晶粒尺寸细小.综合磁性能好;合金薄带的平均晶粒尺寸为24.4nm,磁性能为Br=0.69T。Br/Bs=0.66。Hc=296.1kA/m. 相似文献
2.
采用熔体直接快淬(DRQ)工艺制备了成分为NdxFe94-xB6(x=7,8,9,10at%)和Nd8Dy1Fe85-xNbxB6(x=0,0.5,1,1.5at%)两组合金的最佳快淬薄带.用X射线衍射(XRD)和振动样品磁强计(VSM)测量了薄带的相结构和磁性能.结果表明:NdxFe94-xB6(x=7,8,9,10)合金在x=8时综合磁性能最佳;同时添加少量的Dy和Nb元素,可有效的提高纳米双相复合永磁合金的磁性能. 相似文献
3.
通过控制熔体凝固过程技术(CMS)成功制备纳米晶双相复合永磁NdDyFeCoGaB系合金.利用XRD和VSM检测手段分析了合金元素Dy和Ga对永磁合金显微组织和磁性能的影响.研究发现,合金元素Dy和Ga可以起到细化晶粒,均匀组织,提高矫顽力,增大磁能积的作用.其中,Nd8Dy1Fe81Ga1Co3B6合金的磁性能为,Hci=320 kA/m,Bs=1.14T,(BH)max=85 kJ/m^3. 相似文献
4.
通过控制熔体凝固过程技术(CMS)成功制备纳米晶双相复合永磁NdDyFeCoGaB系合金,利用XRD和VSM检测手段分析了合金元素Dy和Ga对永磁合金显微组织和磁性能的影响.研究发现,合金元素Dy和Ga可以起到细化晶粒,均匀组织,提高矫顽力,增大磁能积的作用.其中,Nd8DylFe81GalCo3B6合金的磁性能为,Hci=320 kA/m,Bs=1.14T,(BH)max=85 kJ/m3. 相似文献
5.
田晓 《内蒙古师范大学学报(自然科学版)》2008,37(2):185-187
用熔体快淬 晶化处理(RQC)工艺制备了Nd2Fe14B/α-Fe纳米复合材料,研究晶化热处理温度和时间对Nd7.5Fe86B6.5纳米复合材料磁性能的影响.结果表明: 快淬速度为25m/s时制备的Nd7.5Fe86B6.5合金薄带的最佳热处理工艺为700℃保温10min; 快淬速度为30m/s时制备的Nd7.5Fe86B6.5合金薄带的最佳热处理工艺为700℃保温15min,并达到最佳磁性能; 在相同晶化温度下,非晶化程度越高的样品,所需的晶化时间越长; 晶化热处理时不仅要完全消除磁体内的非晶相,而且要使晶粒的尺寸尽可能的小. 相似文献
6.
Nd2Fe14(BC)/α-Fe系稀土永磁材料微观组织及磁性能 总被引:4,自引:0,他引:4
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5. 在合金中添加碳可提高矫顽力,添加钕可细化晶粒; 合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织; 在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能.使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释.结果表明,最佳热处理工艺为 700 ℃保温15 min, 其性能为 剩磁1.381 Wb*m-2, 矫顽力518.05 kA*m-1, 剩磁比0.74, 最大磁能积137.75 kJ*m-3. 相似文献
7.
通过熔体快淬法得到α Fe/Pr2 Fe1 4 B纳米双相磁体, 研究了不同辊速快淬带的磁性能, 找到最佳直接快淬辊速条件, 并比较了直接快淬得到的样品和非晶薄带晶化后得到的样品的磁性能, 发现直接快淬得到的样品的矫顽力和机械性能优于非晶晶化样品。 相似文献
8.
Ga添加对纳米晶双相永磁材料Pr2(FeCo)14B/α-FeCo的磁化行为及晶间交换耦合作用的影响 总被引:2,自引:0,他引:2
用熔旋快淬法制备了各向同性的纳米晶双相永磁薄带Pr9Fe74Co12B5与Pr9Fe74Co12B5Ga.通过测量样品的起始磁化曲线、小回线及回复曲线,分析了样品中的磁化行为及晶间交换耦合作用.结果表明两样品中矫顽力机理均为畴壁钉扎型.Ga添加后富集于晶界处,使样品中畴壁钉扎型的矫顽力机理更加均匀,且钉扎程度加强,同时Ga添加降低了软磁相-αFeCo的晶粒尺寸使样品中晶间交换耦合作用显著增强. 相似文献
9.
10.
11.
通过测量晶粒间相互作用强度δM(H)的变化研究了Fe,B含量及组织结构对PrxFe94-xB6(x=12,10.44,9,8),Pr8Fe92-xBx(x=6,10,14)纳米复合永磁合金晶位间相互作用的影响。结果表明:Fe含量增加,使晶粒间的相互作用增强;晶粒小、尺寸接近且紧密接触,有利于产生强烈的交换耦合作用;B含量增大导致合金中在晶界处析出Pr1.1Fe4B4相,从而使晶粒间的相互作用明显减弱。 相似文献
12.
通过熔融快淬法制备具有非晶结构的Nd4.5Fe77B18.5合金,在氩气保护下660℃、10 min热处理获得了最佳磁性能的纳米双相复合永磁材料.由于材料具有双相复合纳米结构,磁体内部的微观磁化行为显示出复杂的交互作用.引入一阶回转曲线图谱法(FORC)研究材料的磁化机制和表征内部的交互作用.该材料的FORC图谱显示:纳米双相材料中存在明显的可逆磁化与不可逆磁化,同时两者相互耦合,耦合作用体现在图谱中的负值区域.不可逆磁化磁矩之间存在强烈的交互作用,体现在不可逆磁化峰的向下偏移和不对称性,整体表现出退磁特性,同时在δM曲线中得到证实. 相似文献
13.
Pr2Fe14B/α—Fe纳米复合永磁的淬态组织对回火时相变过程和磁性的影响 总被引:1,自引:0,他引:1
纳米复合永磁材料的原始淬态组织对最终的显微组织结构和磁性有着决定性的影响,为了弄清其影响规律,研究了成分为Pr7Fe88B5的双相纳米复合永磁材料的淬态组织在回火时相转变的过程和晶化后的组织结构及磁性。X射线谱和Mossbauer谱的研究结果表明,在不同辊速下制得的快淬带样品的组织结构是不同的。原始淬态组织的不同导致回火时的不同相变过程,它们分别是(1)非晶相Am Pr2Fe14B α-Fe→Pr2Fe14B α-Fe;(2)非晶相Am α-Fe→(Am)′ α-Fe→α-Fe 1:7相+Pr2Fe14B→Pr2Fe14B α-Fe;(3)Am→Am′+α-Fe→1:7相+α-Fe→Pr2Fe14B α-Fe。虽然样品最终的相组成均为α-Fe和Pr2Fe14B,但不同原始态的样品晶化后的显微组织和磁性并不同相同。 相似文献
14.
利用单辊快淬法制备了由硬磁相Pr2(Fe,Co)14B和软磁相α-(Fe,Co), Pr2(Fe,Co)17组成的纳米晶复合永磁材料.用X射线衍射、室温磁性能测量和热磁分析等,研究了Pr7.5Dy1Fe-xCo-xNb1B4.5(10,15)合金快淬带在不同温度下不同时间退火后的组织和磁性能变化规律.结果表明,快淬带在700℃退火6 h后,永磁性能仍保持较高的水平,说明同时添加Co和Nb,有可能提高纳米晶复合永磁合金的热稳定性. 相似文献
15.
纳米双相钕铁硼永磁合金的织构及磁畴 总被引:3,自引:1,他引:3
为开发纳米复合永磁材料高磁能积的潜力,用熔体快淬法制备各向异性的纳米双相快淬带。X光衍射结果表明,Nd9Fe85-xNbxB6(x=0,0.5,1.0)快淬带中存在垂直于带面的Nd2Fe14B[00L]织构,其自由面上的织构强于贴辊面。x=1.0时,在15m.s-1的快淬速度下的择优取向度为94%。磁力显微镜观察表明晶粒间存在强烈的交换耦合作用。x=0.5时的快淬带具有较强交换耦合作用及高织构度,因此具有最佳磁性能。其剩余磁极化强度为1.130T,内禀矫顽力为519.8kA.m-1,最大磁能积为121.2kJ.m-3。 相似文献
16.
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5。在合金中添加碳可提高矫顽力,添加钕可细化晶粒;合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织;在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能。使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释。结果表明,最佳热处理工艺为:700℃保温15min,其性能为:剩磁1.381Wb.m-2,矫顽力518.05kA.m-1,剩磁比0.74,最大磁能积137.75kJ.m-3。 相似文献
17.
纳米复合永磁材料的原始淬态组织对最终的显微组织结构和磁性有着决定性的影响,为了弄清其影响规律,研究了成分为Pr7Fe88B5的双相纳米复合永磁材料的淬态组织在回火时相转变的过程和晶化后的组织结构及磁性.X射线谱和Mossbauer谱的研究结果表明,在不同辊速下制得的快淬带样品的组织结构是不同的.原始淬态组织的不同导致回火时的不同相变过程,它们分别是(1)非晶相Am+Pr2Fe14B+α-Fe→Pr2Fe14B+α-Fe;(2)非晶相Am+α-Fe→(Am)′+α-Fe→α-Fe+1:7相+Pr2Fe14B→Pr2Fe14B+α-Fe;(3)Am→Am′+α-Fe→1:7相+α-Fe→Pr2Fe14B+α-Fe.虽然样品最终的相组成均为α-Fe和Pr2Fe14B,但不同原始态的样品晶化后的显微组织和磁性并不相同. 相似文献
18.
比较了Zr,Nb掺杂对Nd8.60Fe80.80Cu0.3Zr2-xNbxB8.30(x=0,1,2)交换耦合纳米复合永磁薄带相组成、显微结构和磁性能的影响. 结果表明:Zr和Nb均能有效地抑制晶粒的长大. Zr与B结合生成ZrB2,消耗了合金中部分B元素,导致合金中硬磁性相N2Fe14B含量的减少. 与Zr相比,Nb能更有效地抑制晶粒长大,提高样品磁滞回线的方形度. 仅掺杂Nb的晶化样品Nd8.60Fe8 0.80Cu0.3Nb2B8.30具有最佳的磁性能:Br=0.89T,H ci=479.1kA·m-1,(BH)max=107.4kJ·m-3. 相似文献
19.
Nb对快淬Nd10Fe84B6合金微观组织和磁性能的影响 总被引:1,自引:0,他引:1
研究了添加Nb对快淬Nd10Fe84B6合金磁性能、微观组织和晶化温度的影响.结果表明:添加Nb可以提高快淬态合金中非晶相的热稳定性,减小最佳退火温度和晶化起始温度之间的温度差,抑制热处理时α-Fe和Nd2Fe14B晶粒的预先析出和长大,有效细化了晶粒,提高磁性能.快淬Nd10Fe83Nb1B6合金经过715℃热处理10 min,磁性能达到Br=0.90 T,iHc=750 kA/m,(BH)max=120 kJ/m3,较之Nd10Fe84B6合金,内禀矫顽力提高了25%,最大磁能积提高了14%. 相似文献
20.
纳米晶复合永磁铁氧体的双相交换耦合作用 总被引:1,自引:0,他引:1
采用sol-gel方法制备纳米晶复合SrFe12O19/γ-Fe2O3铁氧体.利用X射线衍射(XRD),透射电子显微镜(TEM)和振动样品(VSM)对纳米晶样品进行了研究.当焙烧温度介于600~800℃,样品存在SrFe12O19/γ-Fe2O3复相.在同样条件下,压成薄片的样品呈现了硬磁与软磁(SrFe12O19/γ-Fe2O3)的纳米复合相的交换耦合作用.对SrFe12O19/γ-Fe2O3的纳米复合材料的各向同性磁能积的增加和磁性交换耦合作用机制进行了研究. 相似文献