首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
以葡萄糖为碳源,以聚乙烯吡咯烷酮( PVP)为表面活性剂,在碱性条件下用水合肼还原氯化铁,采用两步水热法制备Fe3 O4/C磁性纳米粒子,并采用X-射线衍射仪( XRD)、扫描电子显微镜( SEM)、透射电子显微镜( TEM)对产物进行表征。结果表明:产物为碳包覆纳米四氧化三铁核壳结构,其直径为300~600 nm,晶化程度较高。  相似文献   

2.
采用水相共沉淀法,以没食子酸作为还原剂,还原Ag[(NH3)2]+,制备出核壳结构的Fe3O4/Ag磁性纳米颗粒.研究了该磁性纳米颗粒对于对硝基苯甲醛还原反应的催化性能,研究结果显示:在40℃,纳米颗粒浓度为0.08%时,反应的收率可接近97%.同时使用过的纳米颗粒可较为方便地从反应液中分离,经多次循环使用后,催化性能没有明显下降.  相似文献   

3.
通过溶剂热法,以FeOOH作为前驱体,以油酸作为表面活性剂,以十八烯为溶剂,制备了纳米Fe3O4颗粒,研究了油酸和FeCl3用量、反应时间对纳米Fe3O4粒子的大小以及分散性的影响.结果显示,FeCl3用量的增加和反应时间的延长均可使Fe3O4粒子粒径增大,油酸用量的增加会导致Fe3O4粒子粒径先减小再增大.利用XRD、TEM等手段对所制备颗粒的结构、形貌进行了表征,结果表明,所制备的纳米Fe3O4粒子属于反尖晶石结构.FeCl3用量为0.003mol,油酸用量为13.5mL时(即Fe3+/油酸约为1/15),在230℃反应12h得到结晶度较高,分散性良好,平均粒径比较小的纳米Fe3O4粒子.  相似文献   

4.
为制备硅油基Fe3O4磁流体,采用化学共沉淀法制备平均粒径为11 nm纳米Fe3O4颗粒,利用透射电子显微镜(TEM)、选区电子衍射花样(SAED)、X线衍射分析(XRD)、振动磁强计(VSM)等手段对试样的微观形貌、晶体结构以及磁性能进行表征。在测得无水乙醇中Fe3O4粉体的pH-Zeta电位图基础之上,研究了表面活性剂的类型、表面活性剂的加入量以及超声分散的时间对纳米Fe3O4颗粒分散性能的影响。结果表明:化学共沉淀法制备出的纳米Fe3O4颗粒为面心立方结构,颗粒表面光洁且呈现规则的圆球形,粉体的粒径分布较窄。随着超声时间的延长和表面活性剂使用量的增加,纳米Fe3O4颗粒在无水乙醇中的分散效果在特定点呈现最佳效果之后逐步变差,5种表面活性剂分散效果由好到差的顺序是:聚乙烯吡咯烷酮(PVP)、司班-80(SPAN-80)、司班-85(SPAN-85)、油酸(OA)、硅烷偶联剂KH-550。推荐纳米Fe3O4颗粒在无水乙醇中的分散工艺为:pH=7,PVP加入的质量分数3%,超声时间35 min,超声功率560 W。  相似文献   

5.
在1,2-丙二醇溶剂中,以FeSO4·7H2O和KOH为原料,200℃水热法反应24h,合成了Fe3O4立方体.通过对反应温度、KOH浓度、1,2-丙二醇比例对产物形貌影响,研究了KOH在Fe3O4立方体的形成过程中的作用,并提出了可能的生长机理.运用扫描电镜和X射线衍射对其颗粒结构进行表征.结果表明,Fe3O4立方体为单晶面心立方相结构,尺寸大约为1μm.  相似文献   

6.
通过化学氧化沉淀法制备出球形和八面体形貌的Fe3O4纳米颗粒,对其进行XRD、Raman和SEM等表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了不同形貌Fe3O4的类Fenton催化活性。结果表明:使用化学氧化沉淀法制备Fe3O4,在低pH(8~9)条件下所得到的产物呈类球形,高pH(13)条件得到的产物为八面体形貌,其粒径均在210nm左右,并且结晶良好。Fe3O4/H2O2体系能有效降解橙黄II,并且催化反应主要发生在Fe3O4表面,最佳催化条件为pH 3.0、温度40℃。类球形Fe3O4纳米颗粒的催化活性高于八面体Fe3O4,并且Fe3O4具有良好的化学稳定性,重复使用4次效果稳定。  相似文献   

7.
首先通过共沉淀法制备Fe3O4磁粒子,然后采用水热法制备Fe3O4/Bi2O3复合粒子,并利用X-射线衍射、X-光电子能谱、扫描电子显微镜等进行表征。结果表明,复合粒子由Fe3O4和Bi2O3组成,形貌呈球形,具有三维多级结构。在可见光照射下,所制备的复合粒子对罗丹明B的降解率达95.2%。降解完成后,在外界磁场的作用下,Fe3O4/Bi2O3很快从体系中分离,可进行重复利用,实现循环催化。实验发现,Fe3O4/Bi2O3经5次循环催化后,对罗丹明B的降解率仍达93%以上。  相似文献   

8.
在烧结温度为1400℃、升温速率为20℃/min、保温时间为60 min的工艺条件下,采用真空热压烧结技术制备Ti/Al2O3金属陶瓷复合材料。研究掺加纳米Ni对材料力学性能的影响及强韧化机理。结果表明,纳米Ni的添加可以有效抑制Ti-Al2O3之间的界面反应,提高材料的力学性能,改善材料的物相组分;当掺入Ni的体积分数为3%时,材料的致密度为98.91%,弯曲强度为384.27 MPa、断裂韧性为8.02 MPa·m1/2、显微硬度为16.16 GPa。  相似文献   

9.
以FeSO44@7H 2O(AR),Fe(NO3)3@9H2O(AR),NH3@H2O(AR)为原料,用水热法制备纳米Fe3O44粒子;通过选用合适的分散剂来克服磁性颗粒的沉降,采用超声波分散的方法,制备在重力场和磁场中稳定性好的磁流体.研究了影响水基FeaO4磁流体性能的主要因素,得到最佳条件Fe(NO3)3@9H2O和FeSO4@7H2O的量比为1.75,水热反应温度为160℃,反应时间为5 h,1.5 g Fe3O4分散于100 mL水中所需分散剂的用量为0.75 mL.所制备的产物经XRD和粒度仪检测,结果表明产物为单一相的Fe3O44,水基Fe3O4磁流体体系的粒径在100nm以下.  相似文献   

10.
用溶剂热法结合奥斯特瓦尔德熟化过程制备Co0.2Fe2.8O4多孔微球.用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征样品的结构和形貌,发现所制备的单分散Co0.2Fe2.8O4多孔微球是由许多纳米颗粒组装而成.用振动样品磁强计(VSM)测量样品在不同温度下的磁性,发现其饱和磁化强度随温度升高先保持稳定后快速降低,而矫顽力随温度升高持续减小.  相似文献   

11.
为了制备具有纳米多孔结构的磁性复合微球,采用正硅酸四乙酯(TEOS)和金属氯盐分别作为SiO2和铁氧体的前驱体,通过溶胶凝胶法制备将Fe3O4纳米颗粒分散于SiO2基体中的Fe3O4/SiO2磁性纳米复合微球,并用超临界干燥法对其进行干燥。利用X线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)和振动试样磁场计(VSM)等分析测试手段对合成的材料进行性能表征。结果表明:复合粒子包覆完好、性能优良、分散性良好,制备颗粒的粒径为30 nm,比饱和磁化强度为84.09 A.m2/kg。  相似文献   

12.
本文将生物素(Biotin)修饰于Fe3O4磁性纳米粒子表面制备了BIO-MNPs纳米材料。盐酸阿霉素(DOX)可以通过与生物素之间的氢键作用和自聚集作用负载于BIO-MNPs表面,实验条件下的最大负载量可达823.6 mg/g,且BIO-MNPs@DOX对DOX的释放在弱酸性环境下更优。体外溶血实验以及细胞毒性实验证明BIO-MNPs具有良好的血液相容性和较低的生物毒性;体外细胞摄取实验证明BIO-MNPs@DOX对肝癌细胞和人乳腺癌细胞具有较好的靶向性能,且具有良好的抑制效果。以上结果表明BIO-MNPs可作为药物载体负载抗癌药物DOX,且BIOMNPs@DOX在癌细胞的靶向抑制方面具有一定的应用价值。  相似文献   

13.
考察了Fe3O4/纳米级Fe0对污染水中Cr(Ⅵ)的去除效果,以及Fe3O4投加量、腐殖酸投加量、温度对Fe3O4/纳米级Fe0去除水中Cr(Ⅵ)的影响。结果表明:Fe3O4/纳米级Fe0对水中Cr(Ⅵ)的去除效果很好,在2 min时Cr(Ⅵ)的去除率就能够达到91.4%;这个值比纳米级Fe0单独作用120 min时对Cr(Ⅵ)的去除率还要高。Fe3O4与纳米级Fe0的配比为7.5:1时,Fe3O4/纳米级Fe0对Cr(Ⅵ)的去除效果最好。温度的升高加速了Fe3O4/纳米级Fe0对水中Cr(Ⅵ)还原降解反应的进行。  相似文献   

14.
Fe3O4磁性纳米粒子是目前应用最为广泛的磁性纳米材料,相比于其他材料而言,其制备过程简单、化学稳定性好、储存方便、成本低廉,且容易实现磁性分离。Fe3O4磁性纳米粒子表面容易被修饰大量的含氧官能团,使其易于和其他基团连接,因此具有极大的功能化潜力。经过功能化的Fe3O4磁性纳米粒子具有很高的饱和磁化率以及极好的超顺磁性,从而被广泛用作水体处理过程中吸附剂、催化剂等的基质材料。本文综述了近年来具有代表性的功能化Fe3O4磁性纳米材料,列举了一系列功能化Fe3O4磁性纳米材料的制备方法以及它们在去除水体中的有机物、重金属离子、染料、抗生素等污染物方面的应用,并对磁性纳米材料在实际应用中面临的问题进行了总结和分析。  相似文献   

15.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

16.
利用溶胶—凝胶法成功制备出ZnFe2O4纳米颗粒,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)和振动样品磁强计(VSM)等表征手段研究了ZnFe2O4纳米颗粒的结构和磁学性能.结果表明:样品为纳米颗粒状,呈尖晶石结构,结晶质量很好.经400℃预处理之后,ZnFe2O4纳米颗粒已显示顺磁性,而经过650℃和750℃二次烧结后的样品,随着烧结温度的升高,饱和磁化强度逐渐变小.  相似文献   

17.
为了获得高度取向的阵列材料,以水热合成的纳米Fe3O4磁性颗粒为功能物质,氟碳树脂为薄膜基体,在磁场作用下定向生长成具有磁性针状阵列结构的自组装抗反射薄膜,并考察不同Fe3O4含量对磁性阵列结构的影响;利用体视显微镜和扫描电镜(SEM)对薄膜表面结构进行了表征;采用紫外可见近红外分光光度计(UV/Vis/NIR)来表征自组装薄膜的反射率。结果表明:随着Fe3O4含量的增加,阵列高度逐渐增高;当粉体质量分数为10%时,阵列的间距为300~600μm,阵列中单个针状结构中间的直径约为100μm;薄膜表面的阵列结构对于反射率的降低有明显效果  相似文献   

18.
以垃圾渗滤液膜滤浓缩液混沉出水为研究对象,制备硅藻土负载纳米Fe3O4作为催化剂催化臭氧处理浓缩液.考察溶液初始pH值、臭氧体积流量和催化剂投加量对处理效率的影响.结果表明:在溶液初始pH值为7,臭氧体积流量为1.0 L·min-1,催化剂投加量为0.8 g·L-1,反应时间为90 min时,化学需氧量(COD)和UV254去除率分别为67.8%和86.3%.对进出水进行三维荧光光谱(3D-EEM)和气相色谱-质谱联用(GC-MS)分析的结果表明:经催化臭氧氧化处理以后,浓缩液中的腐殖酸、富里酸和色氨酸等难降解物质大幅度减少;烷烃类、酚类和杂环类物质质量分数下降,烷烃类衍生物质量分数上升;硅藻土负载纳米Fe3O4催化臭氧对于浓缩液有着较好的处理效果.  相似文献   

19.
采用水热法以Bi(NO3)3.5H2O为铋源、CH3CSNH2为硫源、尿素为矿化剂在丙三醇与水的混合溶剂中合成较小尺寸的Bi2S3纳米棒,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见分光光度计(UV-Vis-NIR)、荧光分光光度计(PL)等对样品进行检测表征.结果表明:制备的Bi2S3为纯相正交结构,形貌和尺寸受到S与Bi的比例、溶剂种类、反应温度和反应时间等因素影响.通过控制不同的条件可得到形貌均一的纳米棒.并对小尺寸Bi2S3纳米棒的光学性能及生长过程进行了初步讨论.  相似文献   

20.
包头钢铁厂的平炉尘含铁量高,粒径微细,并以γ-Fe2O3为主,经过提纯分级可以作为生产超细磁性材料的原料.利用同晶型间的拓扑转化原理,在有Fe2+离子存在及避免氧化的条件下,将平炉尘转化为超细尖晶石型铁酸盐Fe3O4.并和离子反应对比,对其反应条件进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号