首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青藏公路多年冻土路段的阴阳坡现象会引发路基及下伏冻土地基热状况不对称分布,影响长期稳定性.为此,基于实测坡面温度数据,开展不同年平均气温和路基高度条件下冻土路基地温场分布及演化规律的模拟.结果表明,年平均气温-3℃下阴坡冻结指数约为阳坡的2倍,融化指数约为阳坡的0.83倍.路基修筑后,阴坡一侧路基下部人为上限均有一定抬升.此后,在气候变暖及沥青路面强烈吸热效应作用下,路基左右路肩下部人为上限不断下降,其中高填方路基人为上限下降速率相对较快.阴阳坡效应作用下,东西路基下部人为冻土上限呈左高右低的趋势,下伏土体温度同样为左高右低.高填方路基下伏冻土层地温分布的不对称较同期的普通填方路基显著.  相似文献   

2.
青藏铁路低温冻土区片石路基的温度特征   总被引:1,自引:0,他引:1  
在青藏铁路五道梁低温冻土区进行了片石护道路基新结构和土护道路基结构的实体工程试验,以确定路基修筑对温度场的影响.对测试断面冻融循环的地温监测资料的分析表明,2004年片石路基左右路肩孔冻土上限处,年平均地温分别低于土护道路基相应位置0.12℃和0.14℃,2005年片石路基左右路肩孔分别低于土护道路基相应位置0.65℃和0.03℃,冻土上限以下地温均呈逐年下降趋势.片石护道和土护道路基冻土上限均存在不对称性,但随着时间发展,片石护道路基最大融化深度位置基本接近或超过天然地面,且冷生过程还在继续.该区域的片石护道路基新结构能够有效发挥降低地温、主动保护多年冻土的作用.  相似文献   

3.
青藏高速公路宽幅路基温度场模拟分析   总被引:1,自引:0,他引:1  
运用ABAQUS及其二次开发平台,建立了多年冻土地区路基温度场有限元分析模型.运用该模型对低等级公路窄幅路基和高等级公路宽幅路基温度场进行对比分析,对宽幅路基融深变化规律进行了研究.结果表明:不同宽度路基温度随时间均呈周期变化,但每年平均温度呈现总体上升的趋势,且在相同的时间条件下,随着宽度的增加,温度不断上升,但增加幅度逐渐降低;路基中心线处融深随宽度的增加呈三阶段上升趋势,路肩处融深随宽度的增加呈直线上升趋势,坡脚处融深随宽度的增加而增加,但变化幅度很小;增加宽幅路基高度可以在一定程度上起到保护冻土的作用,但路基高度增加到一定值后,继续增加高度对提高冻土上限作用不明显.  相似文献   

4.
青藏高速公路路基降温措施有效性模拟分析   总被引:1,自引:0,他引:1  
为了评价已有的冻土路基工程技术对青藏高原多年冻土区高等级公路宽幅路基的适用性,运用ABAQUS有限元软件及其二次开发平台,建立了多年冻土地区宽幅路基温度场有限元分析模型,并运用该模型对普通路基、碎石路基、EPS隔热层路基以及隔热层-碎石复合路基温度场进行对比分析,对4种宽幅路基融深变化规律进行研究.结果表明,不同降温措施条件下路基温度随时间均呈周期变化,但每年平均温度总体上升,且相同的时间和路基宽度条件下,隔热层-碎石复合路基温度最低、热稳定性最好;普通路基第十年最大融深随路基宽度的增加呈直线上升趋势,碎石路基融深随宽度的增加呈三阶段增长趋势,EPS隔热层路基融深随宽度的增加呈两阶段增长趋势,复合路基融深随着宽度的增加逐渐增加但变化不大;单一的EPS隔热层措施、碎石路基对于多年冻土区宽幅路基降温效果较差,隔热层-碎石复合路基降温效果最优.  相似文献   

5.
保护冻土的保温原理   总被引:7,自引:0,他引:7       下载免费PDF全文
在多年冻土地区修筑路堤、设置保温层是保护路堤下多年冻土上限不变甚至上升的隔热保温方法,其保温效果取决于隔热层对下部多年冻土年平均地温和温度较差的改变状况,作者阐述了保温方法的工作原理,并依据该原理探讨了最小路堤高度和最大路堤高度存在的可能性及其适用范围,北麓河试验场的观测资料较好地验证了理论探讨。  相似文献   

6.
多年冻土路基水-热-力耦合理论模型及数值模拟   总被引:5,自引:0,他引:5  
在建立多年冻土地区路基非稳态温度场控制方程、水分迁移的有限元控制方程和路基变形场及应力场计算模型的基础上,提出水-热-力耦合模型。以青藏公路唐南段K3393+950的冻土路基为计算对象,得出了1月份路基温度场、水分场及应力场(变形场)的分布规律:路基温度场内部存在着未冻土核;水分场在温度梯度的作用下有向冻结冰锋线迁移的趋势;在负温条件下,土体的体积含冰量超过临界值时,将产生冻胀现象。研究结果表明,多年冻土地区路基的温度场、水分场及应力场一直处于动态变化中,路基的热状况、水分状况与变化规律及由此引起的应力重分布是引起道路冻害的主要因素。  相似文献   

7.
青藏公路多年冻土路基内的热状况   总被引:7,自引:1,他引:7  
基于青藏公路沿线2组地温观测孔5年的地温观测资料,定量分析了高温冻土区和低温冻土区路基内的热状况.结果表明:路基近地表地温明显高于对应天然地表下的地温,路基近地表经历的融化期长于对应天然地表,高温冻土区路基内已形成贯穿融化夹层;进入路基内活动层的热收支呈明显热积累状态;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态,进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因,低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主,随着地温的增高,低温冻土区也可能发生强烈的冻土融化.  相似文献   

8.
多年冻土区聚苯乙烯隔热公路路基温度场数值分析   总被引:1,自引:0,他引:1  
为了研究随外界环境条件改变聚苯乙烯(EPS)冻土路基温度场变化特征,运用ABAQUS有限元分析方法,对多年冻土区EPS隔热路基的温度场进行了数值模拟.计算时采用改变EPS铺设位置,模拟路面下多年冻土季节最大融深在路基修筑完工后8a内随时间的变化.通过对计算结果分析得出,在多年冻土区路基中铺设保温材料对路面下多年冻土具有明显的保护作用.当EPS铺设在路堤底部时,路堤温度场分布比较均匀,路堤内部都为正温,在EPS板下,路基温度都为负温,说明EPS有效阻止了边坡和路面传入的热量.因此,如果要修筑EPS隔热路基,应将EPS板铺设于路堤底部.  相似文献   

9.
选取东北多年冻土区锥柱式电力杆塔基础为研究对象,基于含相变的热传导理论,采用有限元方法对-1.8℃、-3.5℃和-6.1℃三种年平均气温下不采取保护措施和采取PUR保温板措施的塔基温度场、基底温度变化以及基底的融化层厚度进行了数值分析.结果表明,东北多年冻土区电力杆塔基础修筑过程中,由于施工以及混凝土杆塔良好的导热作用,会对地基土体的温度场产生较大的扰动.施工完成后短时间内杆塔基础底部温度会快速升高,导致地基土体发生融化,严重威胁电力杆塔的热稳定性.在基础旁边设置PUR保温板能明显减弱塔基底部多年冻土温度的上升,有效控制塔基底部的融化范围,对塔基热稳定性具有明显的提升作用.  相似文献   

10.
在全球变暖的背景下,利用有限元法对多年冻土区高等级公路路基温度场进行数值模拟研究。分析路基高度分别为2.0,3.0,4.0,5.0和6.0 m时路基高度与路基下方冻土上限的关系,分析路面宽度分别为14.0,16.0,18.0,20.0和24.0 m时路面宽度与路堤内和基底融化夹层面积的关系。研究结果表明:在影响路基下方多年冻土上限和融化夹层面积的各因素(路基高度、边坡坡度和路面宽度)中,路基高度对冻土上限的影响程度最大,路面宽度对路基内和基底融化夹层面积的影响最大;冻土路基在20 a的设计使用年限内合理高度为4.26 m;冻土路基在不采取"冷却地基"措施的情况下,在20 a的设计使用年限内,路面最大宽度为6.0 m;当路面宽度为12 m时,分幅路基的合理间距为35.3 m。  相似文献   

11.
运营期青藏铁路冻土区路基工程最值得关注的变化是不同部位裂缝的发生和发展以及对线路安全运行的影响.通过对不同时期青藏铁路多年冻土区路基工程裂缝发生发展影响因素的分析,认为冻土区路基工程基底地温场的不对称以及基底土体冻融过程不同步是路基工程变形裂缝发生的主要原因,路基坡脚和周围冻土水热环境变化是裂缝发展的拉动力,路基填料性质也是不容忽略的因素;根据运营期间冻土路基热状态和工程状态分析,对运营期青藏铁路冻土路基工程状态进行了初步评价,并提出了减少或消除地温场的不对称及保护路基坡脚冻土环境,从而抑制冻土路基裂缝的工程对策.  相似文献   

12.
基于大变形融化固结理论建立了多路基结构相互作用融化沉降数值模拟平台,并研究了公路和铁路路基不同相邻间距条件下的融化沉降规律.通过分析计算结果表明,过近的路基相邻间距会加速下覆冻土层的融化.随着相邻间距的增加,两种路基间热学场的影响将逐渐减弱.对于相邻间距较近的情况,路基变形场相对于路基中心的不对称性随时间持续增大.随着路基相邻间距的增大,变形场的不对称性发展逐渐减弱.根据本文的计算算例,当两种路基间距大于20m时,不同路基间的热学和力学场之间将不会产生显著的相互叠加影响.因此,建议在多年冻土区构筑物密集修建地区,构筑物间的安全修筑距离应大于20m.  相似文献   

13.
在多年冻土区修建铁路站场路基,打破了原来天然地表与外界的热力平衡,地下温度场将重新分布.根据此特征可推断多年冻土的发展演化趋势以及评定路基的稳定状况.结合青藏铁路某段站场路基实际监测数据,利用ANSYS软件对2002年~2030年地下温度场进行有限元数值模拟.模拟计算结果表明:路基下冻土上限发生上移,多年冻土得到了保护;在年平均气温增长0.02 ℃的条件下,试验段内冻土人为上限和未受路基影响的冻土天然上限均逐年下降;同时,路基阳坡、阴坡两侧地下温度场分布特征的差异构成了路基不均匀变形和路面裂缝的潜在威胁.  相似文献   

14.
为揭示气候温升背景下青藏工程走廊带多年冻土热融蚀敏感性分布规律,基于现有地温分布、活动层厚度的野外监测数据建立了二者与热融蚀敏感性之间的多元回归模型,并采用开放系统地气耦合模型对2016年以后气候温升模式下多年冻土年平均地温和活动层厚度变化进行数值研究,进而获得未来20 a和50 a青藏工程走廊带多年冻土热融蚀敏感性分布预测图.研究结果表明,走廊带内冻土年平均地温越低,受气候温升的影响越大,而活动层厚度则随地温和气温的升高而增大,年平均气温-5.5℃工况下,其年平均地温和活动层厚度增幅分别为0.015 4℃/a和0.86 cm/a;融区和高温冻土区主要分布在走廊带沿线的河流、谷地和盆地等区域,且随着气温的逐年增加,预计2066年低温冻土区域比例将减少52.1%,高温冻土区域和融区面积比例总计将增加74.7%;走廊带内多年冻土的热融蚀敏感性将大幅增加,且极敏感型冻土的增加比例将随时间而加速增长,到那时极敏感型冻土比例将增长1倍以上,敏感型和极敏感型冻土将占整个走廊带内多年冻土区的78%以上.  相似文献   

15.
通过对青藏高原北麓河地区大气降水以及沥青路面和砂砾路面下部浅层土体水热变化的连续监测,分析路面结构中降水、地温以及水分变化之间的关系.结果表明,在降雨时段,5 cm深度土体水分增加,沥青路面下部土体的水分增量约为砂砾路面的2倍.砂砾路面20 cm及以下深度范围水分增加,而沥青路面下部水分变化量小于0.3%.砂砾路面下部土体间存在良好的水力联系,沥青路面结构中的隔水层阻隔了层中水热交换.面层中水分的波动与降水密切相关,基层水分变化受地温控制.路面结构的隔水层增加了面层的蒸发量,同时造成层下水分的大量聚集和路基储热量的增加,表现为基层地温明显高于面层.水热交换的差异是造成沥青路面热效应的重要原因之一.  相似文献   

16.
在多年冻土区修建铁路,打破了原来天然地表与外界的热力平衡,从而导致地下温度场重新分布.通过对青藏铁路安多试验段实测数据分析,本文论讨了在冻土沼泽化湿地分别采用抛填片石和土工格栅地基处理措施以后的路基地温特性,以及冻土上限的变化趋势.  相似文献   

17.
针对青海省2013年需要新建、改建的高速公路等项目,以109国道青藏高原橡皮山附近季节性冻土区公路路基为研究对象,利用ANSYS有限元模拟分析软件建立数学模型,经过分析后得出该区域路基土体原始温度场.分析结果表明:青藏高原季节性冻土区路基土体内部温度低于0℃的月份为每年的11、12月和翌年l、2和3月,最低温度达-15℃,而在地表2m以下地温高于0℃.  相似文献   

18.
特殊气候条件对多年冻土地区路基的影响   总被引:3,自引:0,他引:3  
为了揭示多年冻土地区路基病害发生的根源,基于青藏高原五道梁、沱沱河和安多等地的气象资料,研究了特殊气候条件对青藏公路路基的影响。从青藏高原年平均气温变化曲线及年降水变化曲线入手,考虑路基周期冻结和融化过程中水分迁移及相变作用,结合SWS-3型连续面波仪的路基强度测试结果,分析了青藏公路纵向裂缝、波浪扭曲变形和不均匀沉陷等典型病害的发生机理。研究发现:青藏高原的低温特征使得路基常年处于冻结和融化的交替状态;雨季集中、固态降水特征致使路侧积水严重;在特殊的气候夺件下路基土体的动弹性模量由最初的均匀分布逐渐过渡到不均匀状态;路基两侧的积水及土体的冻融疏松是造成路基强度不均匀分布、产生病害的直接原因。  相似文献   

19.
由于全球气候变化,以及大规模的寒区工程建设,打破了多年冻土地区原有的地表能量平衡,导致地温升高,冻土上限逐年下降,高温冻土层厚度不断扩大,冻土蠕变变形愈加剧烈。本文通过结合青藏铁路典型多年冻土块石路基路段特征,采用变换等效导热系数法来综合考虑块石通风区的换热性质,数值模拟多年冻土路基多年蠕变变形,进行其10年、20年和30年的温度场和变形场预测,分析其蠕变情况。  相似文献   

20.
冻土作为四相土体,其物理性质较为复杂,而且对于温度具有很高的敏感性,周期性的温度变化会使冻土路基发生冻胀融沉等病害。因此,在冻土地区修建铁路、公路一直是世界性的难题。在青藏铁路工程中,为了防止多年冻土的融化,维持多年冻土的稳定,热棒路基被广泛采用。众所周知,热棒只能在寒季工作,而暖季不工作。基于热棒的工作原理,再结合半导体制冷的原理,在暖季对热棒的冷凝段加入人工制冷装置,使其温度低于蒸发段的温度,从而驱使热棒工作,达到降低地温的目的。在风火山进行的试验表明,半导体新型热棒能够明显降低活动层的温度,有望在今后冻土区的铁路、公路工程建设中发挥良好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号