共查询到19条相似文献,搜索用时 140 毫秒
1.
2.
本文运用机械可靠性理论,将滚动轴承处理为由内圈,外圈和滚动体串联而成的机械系统,并认为它们的接触疲劳寿命服从三参数威布尔分布.在此基础上导出了以接触疲劳强度为基础的滚动轴承疲劳寿命预测公式.同时证明了Lundberg-Palmgren方法的寿命公式为新模型的一个特殊形式. 相似文献
3.
滚动轴承是机械设备中的核心部件,其运行状态对设备的运转有重要影响。深度学习作为滚动轴承故障诊断的重要方法越来越受到重视。由于传统的故障诊断方法没有充分利用数据时序性,提出了一种将第一层为宽卷积核的深度卷积神经网络(deep convolutional neural networks with wide first-layer kernels, WDCNN)和深度长短时记忆网络(deep long short-term memory networks, DLSTM)相融合的模型(WDCNN-DLSTM)。WDCNN将传统的CNN第一层卷积核尺寸加宽,提高了模型对一维振动信号中的空间特征信息的提取能力;DLSTM将多个LSTM模块进行堆叠,提高了模型对一维振动信号中时序信息的提取能力。WDCNN-DLSTM将二者通过连接层融合,优势互补,提高了模型的判别能力。通过实验结果表明,相较于一些其他模型,所提出的方法具有更高的精确度。在变负载的情况下,也仍然实现了更好的分类效果。 相似文献
4.
针对大数据下的滚动轴承振动信号自适应故障特征提取与智能诊断问题,提出了一种结合卷积神经网络(CNN)与长短时记忆网络(LSTM)的故障诊断模型。首先通过网格搜索算法寻找到当前模型的最优初始参数;然后以原始一维振动信号作为模型的输入,利用网络CNN层自适应提取短时特征信并降维后作为LSTM层输入;接着利用LSTM层学习特征信息并训练神经网络模型;最后,网络输出层利用Softmax函数实现多故障模式识别,完成故障诊断。使用Spectra Quest机械故障综合模拟试验台实测数据集对模型进行验证,试验结果表明,与多层感知器、LSTM网络以及经典的LeNet5、AlexNet、VGG相比,所提出的CNN-LSTM模型的分类平均准确率可达99%以上,且模型结构比其他模型更简单,训练时间更短;同时,通过K折叠交叉验证算法对模型进行评价,结果表明CNN-LSTM模型计算误差较小且网络训练充分,未出现过拟合或欠拟合情况。 相似文献
5.
生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.首先对生猪价格序列进行预处理和分析;然后采用萤火虫... 相似文献
6.
滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。为了智能开展设备维护工作,提高设备的运转效率,提出一种基于互信息(mutual information,MI)的主成分分析(principal component analysis,PCA)(MI-PCA)结合支持向量回归(support vector regression,SVR)的滚动轴承剩余寿命预测方法。首先利用小波包降噪算法剔除原始振动信号中的异常数据点和噪声,并基于降噪数据提取其时域、频域和时频域特征;然后结合特征与剩余寿命的互信息值进行特征筛选,再通过PCA降维算法获得可表征轴承退化状态的敏感特征,用于SVR的输入;最后构建并训练SVR剩余寿命预测模型,并将其应用于滚动轴承全寿命试验数据。试验结果表明与基于MI和基于PCA的SVR回归预测模型(MI-SVR模型、PCA-SVR模型)相比,基于MI-PCA的SVR模型具有更高的预测精度(预测精度可达97%),能够实现滚动轴承剩余寿命的精准预测,为开展及时有效的设备维护工作提供了决策依据。 相似文献
7.
滚动轴承疲劳寿命综述 总被引:2,自引:0,他引:2
滚动轴承的疲劳寿命是轴承的一个非常重要的质量指标,而要研究轴承的疲劳寿命,主要途径是通过试验和现场收集有价值的数据。滚动轴承寿命理论的演变,表明随着社会科技进步及人类学识的不断深入,使轴承寿命的预测不断得到更加精确的结果。 相似文献
8.
为提高滚动轴承剩余寿命预测精度,提出一种基于集合经验模态分解-核主成分分析(EEMD-KPCA)和改进的哈里斯鹰优化-最小二乘支持向量机(IHHO-LSSVM)的滚动轴承剩余寿命预测模型.首先,使用集合经验模态分解方法对原信号进行分解,根据相关系数和峭度值选取合适的本征模态函数进行重构;然后,提取时域、频域、小波包能量谱等指标,并用核主成分分析,选取累计贡献率大于85%的主成分作为轴承退化性能指标;建立最小二乘支持向量机寿命预测模型,针对模型参数,提出一种改进的哈里斯鹰优化算法,并在新算法基础上设计新的能量周期性递减调控机制.采用轴承全寿命实验数据进行验证,结果表明:该方法提取的轴承性能评估指标能够更全面地表征轴承性能退化情况,建立的模型具有良好的预测效果. 相似文献
9.
为准确评估滚动轴承运行状态、预测其性能退化趋势以及剩余寿命,提出一种改进回归型支持向量机(SVR)的滚动轴承寿命预测方法。提取轴承信号的时域和时频域特征,通过主成分分析(PCA)方法将特征指标融合成一个归一化综合指标来表征轴承运行状态;利用特征指标和综合指标构建训练和预测向量数据集,结合差分进化灰狼群算法(DEGWO)确定最优惩罚参数和径向基函数(RBF)核参数并构建回归型支持向量机模型;将预测数据集输入到DEGWO算法优化的SVR模型中得到轴承状态评估指标的预测值,实现轴承剩余寿命的预测。利用IEEE PHM 2012数据集验证所提方法的有效性,并将其结果与灰狼群算法(GWO)优化的SVR、网格搜索算法(GSA)优化的SVR和长短期记忆神经网络(LSTM)模型所得结果进行对比分析。仿真结果表明:与其他方法相比,采用所提方法得到的轴承剩余寿命预测均方误差分别降低了44.74%、66.67%、77.27%,决定系数则分别提高了7.25%、20.72%、11.94%,该结果说明了所提方法在轴承剩余寿命预测应用方面的优越性。 相似文献
10.
简单介绍了滚动轴承疲劳寿命的基本概念,对滚动轴承基本寿命计算方法进行简单总结,对轴承的修正寿命计算方法进行了详细分析.并给出了一个滚动轴承修正寿命计算的算例。 相似文献
11.
目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预测框架.首先提取多个能反映电池性能退化的可测参数,并将PCA去除冗余后的结果作为预测健康因子;然后利用一组电池的全寿命数据构建基于NARX神经网络的健康因子和容量预测模型,对同类型不同电池预测时将该电池寿命前期健康因子作为输入,即可间接预测出其RUL.最后实验结果表明所提框架在同类型不同电池RUL的预测中精度较高且适应性较强. 相似文献
12.
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。 相似文献
13.
针对目前大多数基于人工智能的轴承剩余使用寿命(remaining useful life,RUL)预测方法不能很好地预测不同工况下轴承剩余寿命的问题,提出了一种基于迁移学习的寿命预测方法,对不同工况下的轴承进行剩余寿命预测.对采集的轴承原始振动信号进行傅里叶变换得到频域信号,以卷积神经网络和长短时记忆网络作为特征提取器... 相似文献
14.
针对自适应增强回归阈值(adaptive boosting regression threshold, AdaBoost.RT)算法用于判断训练样本好坏的阈值为常数,不能自适应地对每个测试样本动态调整判断标准的问题,提出了一种动态自适应调整阈值的改进AdaBoost.RT算法。通过引入训练结果的均值与标准差构造奇异系数作为判断相对误差的阈值,实现算法训练计算过程中阈值的自适应调整,在提高预测精度的同时,可以减少选择算法参数带来的繁重工作量。采用4组经典测试函数构造不同规模的训练样本数据进行算法检验,实验结果表明,提出的自适应调整阈值算法可以有效利用测试样本之间的差异性,克服了大噪声数据带来的干扰,改进后的集成算法可以改善回归模型的预测效果,提高模型的泛化性能。利用IEEE PHM 2012数据集验证所提方法的有效性,并与极限学习机(extreme learning machine, ELM)和原始AdaBoost.RT算法进行对比分析。结果表明:采用所提方法获得的轴承寿命预测均方根误差降低了5.18%,决定系数提高了3.11%。 相似文献
15.
针对民航发动机寿命预测中监测参数较多筛选困难的问题,提出一种基于信息融合与相关向量机的发动机剩余寿命预测方法。首先通过核主元分析方法从发动机多维监测数据中提取退化特征信息;然后利用非线性模型将主元序列融合成反映发动机退化趋势的健康指数序列;最后采用相关向量机以历史失效数据为训练样本建立预测模型,对现有的发动机健康指数序列进行外推预测得到当前样本的寿命预测值。通过NASA Ames研究中心公开的涡轮风扇发动机仿真数据验证了该方法的有效性,其预测性能优于常用的支持向量机模型和过程神经网络模型。 相似文献
16.
针对传统的预测方法不能同时考虑线性和非线性退化问题,提出了一种基于维纳过程的带随机参数和确定参数的混合退化模型.基于首达时间(FHT)的概念给出了剩余寿命(RUL)的解析渐进显式形式,模型中随机参数通过Kalman滤波技术实时更新,确定参数采用极大似然估计进行估计.最后,采用陀螺仪实验数据验证了该方法的有效性. 相似文献
17.
提出了一种基于双通道的深度卷积神经网络方法,用来预测航空发动机剩余使用寿命。该方法在传统卷积神经网络上,应用最大信息系数进行数据降维、卡尔曼滤波进行数据降噪;通过数据切片,将数据片标签设置为最后一个循环的剩余使用寿命,实现数据重构;引入分段和线性剩余使用寿命衰减模型,并给出了寿命衰减起始点判断方法;将寿命衰减前、寿命衰减中2种特征作为双通道网络模型的输入。在NASA涡轮风扇发动机仿真数据集(CMAPSS)上测试结果显示,在测试数据范围较大时,该方法相关指标明显优于其他方法,在航空发动机剩余寿命预测上具有显著优势。 相似文献
18.
针对锂离子电池健康状态(state-of-health, SOH)估计与剩余有效工作时间(remaining useful life,RUL)预测进行探讨. 提出了一种利用SOH参数反应电池状况,并且建模预测电池RUL的方法. 改进了现有研究成果在RUL预测中不能更新其概率密度的缺陷. 同时应用支持向量回归机(SVR-PF)改进标准粒子滤波算法具有粒子贫化效应的缺点. 仿真结果表明提出的参数准确地反应了电池的状况,同时也准确地预测了电池的RUL;SVR-PF具有比粒子滤波更强的平滑与预测能力. 相似文献
19.
粒子滤波算法本身存在着粒子退化问题,对于衰减趋势变化剧烈的模型,难以获得精确的预测结果,限制了算法的适用范围。针对以上问题对粒子滤波进行改进,通过引入粒子群优化算法中的粒子更新机制,优化粒子的全局位置信息,进而重新分配各粒子权重,降低了重采样阶段粒子重置的比例,改善了算法固有的粒子退化现象,达到改进算法、提升算法预测性能的目的;同时,为验证算法的实际效果,以马里兰大学先进寿命周期工程中心(CALCE)发布的锂电池容量实验数据集为基础,分别使用传统粒子滤波算法与改进的算法进行剩余寿命预测仿真。经过对比发现:改进算法误差下降33.6%,可获得更为精确的预测结果,重采样率下降18.3%,粒子退化问题得到改善。 相似文献