首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
载姜黄素/阿霉素叶酸偶联壳聚糖纳米粒的制备   总被引:1,自引:0,他引:1  
姜黄素(CUR)是一种天然植物多酚,具有逆转肿瘤多药耐药的功效,与抗癌药物阿霉素(DOX)联合用药可以提高阿霉素对肿瘤细胞的敏感性,从而逆转肿瘤多药耐药性。以壳聚糖为载体,叶酸为靶向受体,三聚磷酸钠(TPP)为聚阴离子,姜黄素与阿霉素为药物模型,利用阴阳离子间的静电相互作用,制备了叶酸偶联壳聚糖载双药纳米粒,以达到纳米粒同时具有肿瘤靶向性和抗多药耐药的双重目的。目标产物通过红外光谱、SEM、Zeta电位仪表征了结构和形态,同时考察了不同反应条件对生成纳米粒的影响。结果显示在适宜反应条件(偶联叶酸的壳聚糖浓度和TPP的浓度分别为2.5 mg/m L和1 mg/m L,反应温度25℃,搅拌速度500 r/min,反应体系p H为5.0~6.0)下,得到载药纳米粒粒径约190 nm,Zeta电位为30.72 m V,阿霉素和姜黄素的包封率分别可达85.7%和93.9%,相比目前其他的一些双载药纳米粒,包封率具有明显的提高。  相似文献   

2.
用传统的中药材成分β-细辛醚,研究促脑毛细血管内皮细胞(BCEC)吸收香豆素-6 PEG-PLGA纳米粒(C-6/NP)。结果表明:采用二氯甲烷丙酮混合有机相(2∶1,V/V),在油水比例为1∶2,PEG-PLGA的比例为85∶15,C-6:PEG-PLGA为1∶200时,能够得到粒径为120.0±11.7 nm,PDI为0.253±0.018,Zeta电位为-22 mV左右的C-6/NP纳米粒,其包封率为73.01%。体外释放实验无突释泄漏现象,β-细辛醚控制在20μmol/L范围以内,对BCEC细胞无毒性,能在30 min以内促进PEG-PLGA纳米粒被BCEC细胞吸收,效果显著。  相似文献   

3.
研究采用外观、色泽、再分散性、胶体性、粒径变化及其粒度分布作为指标综合评定,考察PEG-PLGA嵌段共聚物纳米粒冷冻干燥工艺,并研究工艺中冻干保护剂的使用对冻干效果的影响,筛选出适合的冻干方法.实验结果表明,采用麦芽糖作为冻干保护剂,并在浓度为4%条件下所制备得到的纳米粒质量较优良,复水合后采用激光粒度仪测定粒径大小及其分布,平均粒径为255.5±55nm,PDI范围为0.221±0.085.上述实验结果提示,PEG-PLGA空白纳米粒冷冻干燥工艺可以成功制备出质量稳定的冻干纳米粒,为进一步载药研究奠定基础.  相似文献   

4.
为了比较聚乙二醇-聚己内酯(PEG-PCL)不同结构共聚物纳米粒的性质,采用开环聚合反应制备PCL-PEG-PCL和mPEG-b-PCL共聚物,通过FT-IR,~1H-NMR和GPC进行结构确证,利用分子自组装技术分别形成了"蘑菇"结构和"刷"结构载姜黄素(CUR)纳米粒共聚物,对其性质进行了研究。结果表明:CUR以无定型态存在于纳米粒中,纳米粒形貌为球形核壳结构且分布均匀;受共聚物结构的影响,"蘑菇"结构纳米粒具有较小的平均粒径(105.71±3.20)nm、较高的载药量和包封率;PCL-PEG-PCL纳米粒表面形成了致密的PEG层,能有效防止蛋白质吸附,在体内具有良好的稳定性;"刷"结构纳米粒具有较低的临界胶束浓度(CMC)和良好的缓释性能,对HepG-2细胞增殖有较高的抑制作用。因此,研究载药纳米粒可为药物递送系统的选择以及不同结构纳米粒的临床应用提供参考。  相似文献   

5.
考察阿昔洛韦/赖氨酸壳聚糖纳米粒的理化性质。利用激光粒度分析仪、透射电镜、扫描电镜、高效液相色谱仪等测定载药纳米粒的形态、粒径、包封率和载药量,并考察载药纳米粒的体外释放行为。考察结果,微球呈类圆形,具有明显的核壳;载药的粒子平均粒径大小为107.96 nm;包封率为(61.24±0.68)%;载药量为(15.36±0.65)%;体外释放符合Higuchi模型。结论:阿昔洛韦/赖氨酸壳聚糖纳米粒理化性能具有良好的稳定性,符合实验设计要求。  相似文献   

6.
采用乳化-溶剂蒸发法制备紫杉烷类PEG-PDLLA纳米粒,马尔文激光粒度仪测其粒径及Zeta电位;HPLC法测定纳米粒包封率和载药量;研究载药纳米粒在PBS中的释放动力学;初步评价载药纳米粒在MGC803、HeLa细胞中的摄取及细胞毒性。结果表明,通过包载形成的纳米粒的粒径为(13±1)nm,分布较集中。载体与药物的质量比在20∶1时,紫杉醇的均一性最好,卡巴他赛的包封率最高,达到88.77%。载药纳米粒具有较好的缓释作用,MGC803、HeLa细胞的存活率降低,与临床用注射剂效果相近。紫杉烷类PEG-PDLLA纳米粒的性质、释放、细胞抑瘤率都较好,可为开发紫杉烷类新型静脉注射制剂提供实验依据。  相似文献   

7.
考察阿霉素果胶纳米粒(Doxorubicin-loading Pectin Nanopaticle,DOX-PEC-NP)的制备工艺及其体外抗癌作用.采用微乳法制备果胶纳米粒(Pectin Nanopaticle,PEC-NP),吸附载药制备载阿霉素果胶纳米粒,并用FTIR、DSC与X线衍射法对纳米粒的成型与载药机理进行探讨.采用溴化四唑蓝比色法(MTT法)、流式细胞仪及激光共聚焦显微镜评价DOX-PEC-NP对Hela、MCF-7、HepG2 3种癌细胞株的体外抗肿瘤活性.所制备的PEC-NP通过静电相互作用成型并吸附阿霉素载药.DOX-PEC-NP外观圆整,平均粒径为(353.66±2.86)nm,电位为(-20.17±0.67)mV,包封率为90.63%,载药量为17.18%.不同质量浓度的DOX-PEC-NP(阿霉素终质量浓度:0.25、0.50、1.0、2.0、4.0μg/mL)分别作用于Hela细胞、MCF-7细胞、HepG2细胞24、48、72 h后,相比于阿霉素原料药,抑制率升高18.19%~27.14%,均具有显著性差异(P0.05).流式细胞仪与激光共聚焦显微镜显示,DOX-PEC-NP更容易被肿瘤细胞摄取,发挥药效.阿霉素果胶纳米粒起效快,具有一定靶向作用,有望减少药物用量、降低毒副作用.  相似文献   

8.
氧化锌纳米粒(ZnO NPs)的化学稳定性、生物相容性和高载药性能使其有望成为一种新型药物传递载体.研究拟开发一种经N-乙酰-L-半胱氨酸(NAC)封端并表面功能化的ZnO NPs,作为抗癌药物姜黄素的给药系统.在含NAC的溶液中,用ZnCl_2和NaOH成功制备NAC封端ZnO NPs(ZnO-NAC NPs),然后将姜黄素共价结合到纳米粒表面,制得载药纳米粒(ZnO-NAC-Cur NPs).用X射线衍射法、傅里叶变换红外光谱法、透射电镜、扫描电镜(SEM)和动态光散射法进行表征.结果表明,ZnO-NAC-Cur NPs呈近球形,均匀分散,平均粒径约为70 nm. ZnO-NAC-Cur NPs几乎无溶血性.此外,用B16F10鼠黑色素瘤细胞进行MTT细胞毒试验,结果表明,IC_(50)值从17.23μg·mL~(-1)(游离姜黄素)降到8.78μg·mL~(-1)(ZnO-NAC-Cur NPs).该结果表明,载药纳米粒的抗癌活性增强.  相似文献   

9.
采用直接透析法制备载羟基喜树碱-聚乳酸(HCPT-PLA)纳米粒并研究其理化性质、体外释放和细胞毒性.以HCPT-PLA纳米粒的载药率为评价标准,通过正交设计考察PLA浓度、HCPT与PLA的质量比和不同截留分子质量透析袋对其指标的影响.利用Malvern nano-zs粒度测定仪、XRD、DSC和激光共聚焦显微镜(CLSM)对HCPT-PLA纳米粒的理化性质进行表征.薄膜透析法考察体外释药特性;MTT试验检测细胞毒作用.在优化条件下制备的载药纳米粒为实心球形,平均粒径为226.8 nm,多分散系数为0.270,载药率为7.49%.HCPT是以晶体状态均匀分布于PLA纳米粒中.药物体外释药符合Higuchi方程Q=2.000 6X1/2-2.593 4,r=0.989 2.MTT试验显示HCPT-PLA纳米粒呈现明显细胞毒作用.透析法制备HCPT-PLA纳米粒,粒径小且分布均匀,具有较好的缓释特性;细胞毒性试验表明HCPT-PLA纳米粒具有较强的抑瘤作用且抑瘤效果优于HCPT.  相似文献   

10.
采用乳化分散-超声法制备布洛芬固体脂质纳米粒(IB-SLN),对其粒径、zeta电位、包封率、载药量、体外释放等进行体外评价,并考察IB-SLN经皮给药后兔体内药动学特征.结果显示,研究制备的IB-SLN的平均粒径为(100±20)nm,zeta电位为-43.9mV,包封率为92.6%,载药量为3.33%.兔体内药动学研究显示,IB-SLN可有效促进布洛芬的经皮吸收,布洛芬固体脂质纳米粒凝胶剂经皮给药后的AUC和Cmax分别为640.86ng·h/mL和65.94 ng/mL,分别是布洛芬凝胶剂的12.6倍和4.5倍.研究结果提示,固体脂质纳米粒作为布洛芬经皮给药载体可有效促进药物的透皮吸收,并可使药物缓慢平稳释放,其应用前景广泛.  相似文献   

11.
制备并优化替莫唑胺辛酯纳米粒(TOE-NPs),对其进行体外表征及抗脑胶质瘤效果考察.采用Box-Behnken响应面法优化替莫唑胺辛酯纳米粒处方;对采用最优处方制备的纳米粒的粒径、包封率、载药量、体外药物释放特性等进行评价,以大鼠脑胶质瘤细胞(C6)为模型细胞考察抗胶质瘤效果.纳米粒最优处方为:有机相与水相体积比(1:3.3),聚乳酸-羟基乙酸共聚物(PLGA)质量浓度8.80 mg/mL,理论载药量17.77%,所制备的替莫唑胺辛酯纳米粒粒径为136.2±3.4 nm,包封率为(93.29±1.93)%,120 h累计释放率为(88.13±2.39)%,MTT结果显示替莫唑胺辛酯纳米粒对C6细胞的生长抑制活性强于替莫唑胺纳米粒(IC_(50),28.16μmol/L和169.12μmol/L,P 0.01).所优选的纳米粒处方合理可行,替莫唑胺辛酯纳米粒有明显的缓释特性和较强的体外抗胶质瘤活性.  相似文献   

12.
紫杉醇作为治疗癌症的有效药物具有很强的抗癌效果和广谱治疗范围.紫杉醇白蛋白纳米粒可提高其溶解度和生物利用率.本文采用注入法制备不同药载比(紫杉醇/牛血清白蛋白)的紫杉醇白蛋白纳米粒,考察了其粒径及释药性能.以药载比为9∶1制备的纳米粒的粒径最小,颗粒最均匀并且其释放速率最慢,有较好的缓释效果.考察药载比为9∶1制备的纳米粒的稳定性及载药量.放置一周后其粒径没有太大变化判断其稳定,计算载药量为11.45%.  相似文献   

13.
采用离子交联法制备反式白藜芦醇纳米粒(t-Res-NPs),通过Box-Behnken效应面法优化制备工艺.从包封率、粒径、Zeta电位、载药量、纳米粒形态、缓释作用、稳定性等方面对t-Res-NPs进行体外评价.结果表明:t-Res-NPs粒径为(85.38±1.69) nm,Zeta电位为(19.93±3.25) mV,包封率为(88.31±0.59)%,载药量为(5.96±1.60)%;纳米粒形态呈圆形;t-Res-NPs具有良好的缓释作用,释放过程较为平稳,突释现象不明显;肠内菌对t-Res-NPs及反式白藜芦醇(t-Res)几乎无代谢作用,肝脏代谢酶对t-Res具有强烈的代谢作用,而t-Res-NPs可以有效地保护药物,减慢其代谢速率;t-Res-NPs可明显改善t-Res溶解度差、生物利用度低的缺点.  相似文献   

14.
磁性载药纳米粒因具有非侵入性和高靶向性等特点,已成为当前给药系统的研究热点之一。其靶向递送是将药物负载到高磁响应性的纳米粒上,利用外磁场使纳米粒移动并聚集于靶器官或靶组织,从而提高靶器官或靶组织的药物浓度,降低药物对正常组织的毒副作用,提高药物的生物利用度。该文就磁性纳米粒的性质、制备方法及其用作药物载体等方面的内容进行了探讨。相信随着药学、分子生物学、医学、电磁学、高分子材料学和纳米技术的不断发展,载药磁性纳米粒将成为最具疗效的靶向给药系统而应用于临床。  相似文献   

15.
结合纳米粒优良的载药特性和细胞膜作为外壳来包载合成的纳米粒内核,使其伪装成内源性物质,减少网状内皮系统的摄取和免疫识别,构建一个新型的药物递送系统——红细胞膜仿生纳米粒递药体系。采用反溶剂法制得纳米粒(nanoparticles, NP),采用离心法提取红细胞膜(red blood cell membranes,RBCM),红细胞膜与纳米粒不同比例共挤压不同次数来制备红细胞膜仿生纳米粒(red blood cell membranes biomimetic nanoparticles,RBCM-NP)。通过透射电镜、马尔文粒度仪来表征NP和RBCM-NP,利用生物素化纳米粒(biotinylated nanoparticle,BTNP),与链霉亲和素(streptavidin,ST)孵育会发生聚集反应来研究红细胞膜的覆盖程度。NP和RBCM-NP粒径均一,优化处方红细胞膜能够完全包裹住纳米粒,重现性良好。  相似文献   

16.
利用多巴胺(DOPA)在有氧碱性溶液下形成聚多巴胺(PDA)的性质,以阿仑膦酸钠(ALD)为模型药物,作者制备了空白聚多巴胺纳米粒(PDA-NP)和载阿仑膦酸钠的聚多巴胺纳米粒(PDA-ALD-NP),并对这两种纳米粒的粒径及Zeta电位、形貌、稳定性、载药量、体外释放、摩擦学性能以及细胞毒性等进行了初步考察.结果表明,二者平均粒径均小于102nm,分布较窄,Zeta电位均在-25mV左右.用扫描电子显微镜(SEM)观察两种纳米粒形貌,显示PDA-NP和PDA-ALD-NP光滑圆整.紫外可见分光光度法(UV-Vis)测得PDA-ALD-NP载药量为5.3%±1.2%,体外释放结果表明PDA-ALD-NP明显减缓了ALD的释放.体外稳定性实验结果显示,PDA-ALD-NP在水溶液和胎牛血清(FBS)中能够保持一定程度的稳定.摩擦学考察结果显示PDA-ALD-NP具有较好的摩擦学性能.此外,采用MTT法考察了DOPA和两种纳米粒的生物相容性.  相似文献   

17.
用乳化聚合法制备丹酚酸B-聚氰基丙烯酸正丁酯纳米粒(Sal B-PBCA NP),以吐温80和PEG 20000制备了Sal B-PBCA NP的两种包衣产物T1P0、T1P1,并考察其体外释药特性。结果表明:Sal B-PBCA NP纳米粒平均粒径99.2 nm,包封率为46.55%,载药量0.792%;Sal B-PBCA NP、T1P0、T1P1在48 h后分别累积释放(76.15±0.69)%、(63.72±1.80)%、(47.09±5.72)%;体外释药结果均符合Weibull方程。与未包衣的Sal B-PBCA NP相比,以吐温80和PEG 20000包衣的T1P1具有明显的缓释作用。  相似文献   

18.
以新型聚合物聚碳酸亚丙酯马来酸酯(PPCM)为载体,采用Oil/Water单乳液溶剂挥发法制备药物非那雄胺(finasteride)的缓释微球,并研究聚合物PPCM与药物finasteride的质量比对微球特性的影响。研究结果表明:所得PPCM微球外观圆整,平均粒径约为2μm。随着非那雄胺比例的增加,微球的载药量提高,而药物的包封率则明显降低。在m(PPCM):m(finasteride)为5:1的条件下,获得较高的载药量和包封率,分别为14.78%和66.17%。在pH 7.4的磷酸盐缓冲溶液中,载药微球的体外释放时间达42 d,药物累积释放量为(92.59±2.62)%。微球的释药特性符合Higuchi方程Qt=3.11+15.07 t1/2。PPCM适用于长效缓释药物传递系统。  相似文献   

19.
测定大鼠血浆中含丁香苦苷的量,并对具有抗乙肝病毒的丁香苦苷单体和丁香苦苷PLGA纳米粒进行大鼠体内药动学比较研究.采用色谱柱:Diamonsil C18(5μm,250×4.6 mm)流动相为甲醇-水(50∶50,V/V);流速为1.0 mL/min;检测波长为221 nm;进样量为20μL.测定Wistar大鼠尾静脉注射丁香苦苷后不同时间血浆中的药物质量浓度.给药剂量相同(10 mg/mL)时,丁香苦苷PLGA溶液的T1/2α和T1/2β值是丁香苦苷溶液的1.23倍和2.25倍.AUC值是丁香苦苷溶液的3.09倍,血浆清除率约为丁香苦苷溶液的1/3.经过数据拟合发现丁香苦苷单体与丁香苦苷PLGA纳米粒在大鼠体内过程均符合二室模型,载药纳米粒给药后,使丁香苦苷能在体内较长时间维持较高的血药质量浓度,起到一定的缓释作用.  相似文献   

20.
用溶剂蒸发法制备了布洛芬(IBU)-羟基丁酸和羟基戊酸共聚物(PHBV)纳米粒,粒径在500~800nm之间.研究了乳化剂类型及浓度、水相pH值、药/聚合物质量比、共聚物中羟基戊酸单体(HV)含量对载药纳米粒包封率和载药量的影响.最佳工艺条件为:水相pH值为4.0,药/聚合物质量比为10/50,聚合物中HV含量为6%~10%(质量分数),聚乙烯醇浓度为1%(体积分数).用逐层(LbL)自组装技术将壳聚糖和海藻酸钠包覆到载药纳米粒表面,包覆6层聚电解质后的IBU.PHBV纳米粒的突释量由包覆前的70%下降到15%,说明将溶剂蒸发法和LbL自组装技术结合可以显著抑制释放初期的药物突释效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号