首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地铁线路超高对轮轨磨耗的影响   总被引:1,自引:0,他引:1  
为了减轻地铁车辆在圆曲线区段运行所造成的轮轨磨耗,提高车辆运行的安全性与舒适性,基于车辆动力学理论,通过动力学软件SIMPACK建立轮轨关系模型,针对列车通过圆曲线时过超高、正常超高和欠超高三种工况进行研究.分析了三种工况下,轮轨横向力、轮轨垂向力、脱轨系数、磨耗功率、磨耗指数、轮重减载率和倾覆系数7个动力学参数在列车运行中的变化规律,并深入分析磨耗指数和磨耗功率与车辆实际通过时产生超高的变化规律,得出超高变化与磨耗指数成负相关,与磨耗功率成正相关,且列车通过圆曲线时应尽量降低速度,在条件不允许时,应采用尽量小的欠超高.  相似文献   

2.
为了研究不同车轮型面对地铁9号道岔转辙器区的轮轨静态接触行为的影响,基于经典迹线法求解轮轨接触几何关系,利用三维非赫兹滚动接触理论分析接触力学特性,分析接触点对分布、道岔转辙器结构不平顺、轮轨接触几何参数和轮轨接触斑的形状、面积及最大法向接触应力等。数值计算中,考虑轮背距为1 353 mm的LM和DIN5573以及轮背距为1 358 mm的S1002这3种车轮型面,从静力学分析的角度提出地铁道岔区的最优车轮型面。研究结果表明:DIN5573车轮过岔接触点对分布较集中,结构不平顺幅值较小,直向过岔时轮对的稳定性较好但接触力学特性较差;S1002车轮侧向过岔通过能力较强,接触力学特性良好,但轮对向尖基轨侧横移时较易发生轮缘接触,轮轨表面易产生疲劳伤损;LM车轮综合匹配性能最好。  相似文献   

3.
为研究不同轨底坡条件下实际运营地铁列车的轮轨接触特性,采用轮轨接触空间迹线方法计算分析了轨底坡对轮轨接触几何参数的影响,并建立某地铁B型车辆动力学模型,详细分析了不同线路条件下轨底坡对车辆动力学性能的影响规律.研究表明:LMCHN60轮轨匹配条件下,轨底坡在1/45~1/20范围内轮轨接触点分布连续,特别是直线段在轨底坡为1/20、曲线段在轨底坡为1/40时轮轨匹配性能良好;运营条件下车轮踏面凹磨造成等效锥度过大,轮轨接触点分布不连续,易造成异常晃车;曲线地段车轮踏面凹磨限制了轮对横向运动,导致轮对对中困难,轮轨接触匹配不良,易造成轮轨滚动接触疲劳.  相似文献   

4.
为了降低地铁小曲线半径处钢轨的损伤,延长钢轨使用寿命,提出合适的轮轨摩擦因数和Kaker权重系数。首先,基于车辆-轨道耦合动力学理论,利用SIMPACK软件建立了小半径曲线动力学模型,考虑轮轨磨耗与滚动接触疲劳的耦合关系,建立钢轨损伤模型;其次,根据标准工况下动力学计算结果,分析小半径曲线轮轨动态相互作用特征,研究内侧和外侧钢轨的损伤特性,提出了最优损伤方案;然后,设置50个轮轨摩擦因数和Kalker权重系数匹配方案,分析摩擦因数和Kalker权重系数对轮轨动态相互作用和钢轨损伤特性的影响;最后,综合考虑车辆运营安全性和钢轨损伤特性,提出轮轨摩擦因数和Kaker权重系数匹配方案。研究结果表明:在标准工况下,内轨损伤形式为磨耗,外轨的磨耗程度大于内轨磨耗程度,考虑到缓和曲线上累积的疲劳损伤,外轨的使用寿命更低;Kalker权重系数越小,轮轨横向力、脱轨系数和车体横向振动加速度最大值越小,Kalker权重系数越小且摩擦因数对轮轨动力行为、磨耗和疲劳损伤的影响越小。建议小曲线半径地段轮轨摩擦因数应不大于0.2,Kalker权重系数应该不大于0.1,此时内轨和外轨磨耗指数最大值均小于100 N,钢轨几乎不产生磨耗,内轨和外轨疲劳损伤最大值为0,大幅提升了钢轨的使用寿命。  相似文献   

5.
建立曲线段地铁线路的轮轨接触三维有限元模型,研究行车速度、曲线半径、轴重、钢轨超高、轮轨接触位置和摩擦系数等因素对轮轨接触状态的影响,结果表明:钢轨最大等效应力先随行车速度的增加而减小,且一旦行车速度超过设计速度,等效应力就随之增大;改变钢轨的曲线半径和超高不会影响最大等效应力谷值的变化,但轴重的增加会使等效应力的谷值升高;曲线半径和超高的增加或速度的降低,将会导致接触位置为靠近轮缘一侧工况下的钢轨最大等效应力下降,远离轮缘一侧工况下的钢轨最大等效应力上升;不同摩擦系数因数下的钢轨最大等效应力变化不大。  相似文献   

6.
该研究建立了三维瞬态滚动接触有限元模型,用于求解速度高至500 km/h的轮轨瞬态滚动接触行为。该模型考虑了轮轨的真实几何形状,可引入任意接触面不平顺、黏着系数(或摩擦系数)沿钢轨纵向的波动及相对滑移速度对黏着系数的影响,并可考虑材料的非线性行为。不同的切向接触载荷,即不同运动状态下的车轮所承受的驱动或制动力,由施加于车轴的随时间变化的扭矩来控制。模型采用显式有限元方法,其条件稳定特性决定了计算时间步长需取值极小,这使得该模型适合于时域内求解轮轨高速滚动过程中的高频动态或瞬态现象,如分析轮轨接触表面短波长缺陷处(钢轨焊接接头、波浪形磨损和车轮扁疤等)的轮轨瞬态冲击响应。另外,模型中充分考虑了车辆转向架和轨道子系统的主要部件,数值重现了三维轮对的真实滚动行为,因此车辆—轨道的耦合作用、与高速滚动相关的自旋、陀螺仪效应等因素均包含于模型之中。过去一年多,应用上述三维高速瞬态滚动接触有限元模型进行了一系列研究。不同速度的模拟结果发现,500 km/h以下速度对光滑接触表面上压力分布的影响可以忽略,而相应的应变率随速度增加而增加。针对很多国家出现的钢轨表面塌陷现象,即钢轨接触带内出现的具有两瓣特征且第二瓣更大的局部滚动接触疲劳损伤,也进行模拟研究,结果显示其发生应该与轨下胶垫的刚度有很大关系。车轮滚过钢轨短波波磨的瞬态接触结果显示,轮轨接触力在波磨段呈现出明显的波动,且当波深足够深时,接触状态会在滚滑—滑动—滚滑间反复震荡,从而导致V-M应力与摩擦功的波动。跟传统的基于多体动力学的车辆—轨道耦合动力学结果相比,发现传统模型夸大了轮轨间的接触刚度。另外,随相对滑动速度变化的摩擦力模型被发现对轮轨间的切向滚动接触具有重要的影响。  相似文献   

7.
利用有限元分析软件Ansys对轮轨系统进行弹塑性静力分析,建立起重机小车在运行中发生偏斜和不发生偏斜两种工况下的有限元模型,研究这两种不同工况下轮轨系统所受应力的分布状态.结果表明,小车运行中发生偏斜时,轮轨承受更大的应力,最大应力区集中分布在小车偏斜方向的半边轨道上,且轮缘与轨道之间发生接触,导致轮轨更易磨损.  相似文献   

8.
为研究钢轨打磨对轮轨接触关系的影响,根据武广高铁历次打磨后轨检车检测的轨道不平顺质量指数,选取现场实际打磨后的轮轨廓形,建立"车轮-钢轨"接触关系模型并进行有限元仿真计算,计算结果表明打磨后轮轨接触点会向钢轨踏面中心移动.通过对钢轨光带和廓形的跟踪调研发现:打磨后钢轨顶部形成20~30mm的光带;打磨13个月后,通过总重约为3.979×107 t,钢轨光带有变宽和双点接触的轻微痕迹;打磨17个月后,通过总重为5.203×107 t,光带明显变宽,宽度约为35mm.通过采集株洲和广州高铁工务段动检车的横向加速度报警量,发现钢轨打磨能有效减少动车横向加速度报警.通过分析长沙供电段供电量的变化,发现钢轨打磨能在一定程度上降低动车的耗电量.  相似文献   

9.
应用有限元计算方法,以实际测试接触斑验证计算模型和方法的正确性;在此基础上,分析了踏面磨耗对轮轨接触特性的影响。首先,通过实际测试得到轮对的踏面轮廓坐标数据,根据实测数据建立有限元模型。应用感压胶片现场实测得到轮对自重时轮轨接触斑的大小,与有限元仿真轮对重力作用下的接触斑进行对比,证明有限元模型和接触参数设置的正确性。应用此有限元模型,研究了随着车辆运行里程的增加,车轮不断磨耗而发生变化的车轮型面对轮轨接触斑、接触应力的影响变化规律。结果表明:初期随着磨耗的增加,轮轨型面更加匹配,接触应力逐渐减小,磨耗速度逐渐降低;当车轮磨耗到一定程度后,接触应力和磨耗速度又快速上升。  相似文献   

10.
针对地铁线路上普遍存在的波磨问题,依据实际运营情况,建立了车辆-轨道刚柔耦合数值模型,借助实测数据验证了模型的有效性.分析了直线和曲线轨道上的轮轨黏滑特性,并利用黏着系数总体离散率衡量了钢轨波磨的发生趋势,同时分析了黏滑振动的相位同步条件.结果表明:当不考虑轨面不平顺时,直线轨道轮轨界面具有发生横向黏滑振动的趋势,但振动强度相对较小;当存在短波不平顺时,直线轨道轮轨界面具有发生纵向黏滑振动的趋势,且振动强度相对较大;当存在长波不平顺时,直线轨道轮轨界面具有发生横向黏滑振动的趋势,但振动强度相对较小.对于直线无不平顺或存在长波不平顺情况,出现波磨或波磨进一步发展的原因与轮轨横向黏着系数达到饱和有关;而对于直线短波不平顺情况,波磨进一步发展的原因则与轮轨纵向黏着系数达到饱和有关.曲线轨道上内外侧轮轨均具有发生黏滑振动的趋势,且短波不平顺的存在会加剧黏滑振动强度.内侧轮轨界面纵横向黏着系数总体离散率大于外侧对应值,表明内轨更容易发生强度较大的黏滑振动,从而促使内轨波磨形成和发展.轨面固定缺陷会导致相同位置处产生同相位的钢轨磨耗,赋予同相位的周期黏滑振动,并沿着钢轨纵向发展,最终形成钢轨波磨.  相似文献   

11.
机车同轴左右车轮存在直径不一致的情况,改变了轮轨的接触状态。针对机车同轴轮径差的问题,建立了机车动力学仿真模型和轮轨接触三维弹塑性有限元模型。通过动力学仿真计算和动载荷作用下弹塑性接触计算,分析同轴轮径差对机车运行性能的影响。结果表明:由于同轴轮径差的存在,轮轨间的动载荷发生变化。当内侧车轮直径小于外侧车轮直径时,在一定程度上有利于机车曲线通过;反之则会降低曲线通过性能。与无轮径差相比,同轴轮径差存在时,车轮与钢轨接触位置发生改变,等效应力增大,导致磨耗增加,降低车轮和钢轨的使用寿命。  相似文献   

12.
只考虑轮对弯曲振动下的结构柔性,建立了把车轴考虑成铁木辛科梁的柔性轮对简化模型,用格林函数求解其在稳态谐波力作用下的运动方程,从而求出车轮倾斜角位移.根据轮轨接触几何约束关系,用解析方法推导了柔性轮对与钢轨接触几何的约束方程组,对该约束方程组进行求解,得到轮轨接触几何参数,并与相应的刚性轮对轮轨接触参数进行了对比,讨论了轮对弯曲变形对轮轨接触点位置及其接触参数的影响.结果表明,当轮对横移量超过5mm时,轮对的结构柔性会导致轮轨接触参数发生明显变化;该简化模型可以有效地解决需要考虑轮对柔性的轮轨接触计算问题.  相似文献   

13.
高速铁路站内绝缘节烧损事故时有发生,轮轨接触电阻是引起轮轨电弧造成绝缘节烧损的重要指标,因此准确计算接触电阻是分析绝缘节烧损问题的重要基础,接触电阻的大小主要取决于轮轨接触斑点的面积。对此,通过有限元分析软件ANSYS计算不同荷载工况下轮轨接触面积,分析列车轴重和偏移量对接触电阻的影响规律。结果表明,轴重从9 t增加到27 t时,轮轨接触电阻减小近36.2%;横移量增大10 mm时,轮轨接触电阻减小18.9%。轮轨接触电阻的变化随着轴重和轮轨横移量的增加呈现相同变化趋势。  相似文献   

14.
轨枕空吊对钢轨焊接不平顺区轮轨接触的影响   总被引:1,自引:0,他引:1  
采用显式有限元法建立考虑有砟道床非线性支撑的三维轮轨瞬态滚动接触模型,于时域内再现轨枕空吊和钢轨焊接接头不平顺共同激扰下的轮轨滚动接触行为,研究了轨枕的空吊间隙和数量对焊接不平顺区轮轨瞬态相互作用的影响。结果表明:轨枕完全空吊会进一步加剧焊接不平顺区的轮轨冲击效应,进而加大了钢轨表层材料的屈服变形,且屈服程度随空吊轨枕数量的增长而增长;焊接接头处2根毗邻轨枕完全空吊条件下,法向轮轨力、瞬态接触应力、接触斑面积和von Mises等效应变等轮轨接触参数较无轨枕空吊时分别增长14.5%、4.2%、8.5%和6.7%,轨面垂向位移的增幅达到72.0%,而接触斑内黏着与滑移区比例的变化则相对较小;当焊接接头处1根轨枕的空吊间隙超过1.0 mm或2根毗邻轨枕的空吊间隙超过1.3 mm时,前述轮轨接触参数会随着轨枕空吊间隙增长而增长迅速,直至出现轨枕完全空吊现象。  相似文献   

15.
接触斑的法向应力分布是轮轨动力学分析和轮轨磨耗计算的基础。铁路车辆采用的磨耗型踏面出现多边形时,接触点处的轮轨横向曲率和纵向曲率都随接触位置的变化而变化,此时最常用的赫兹接触方法的精度难以保证。非赫兹方法的计算精度高,但其效率不能满足工程计算要求。应用非赫兹方法分析了车轮多边形引起的轮轨纵向曲率变化对接触斑的影响,发现当车轮多边形波长大于65 mm时,多边形对接触斑应力分布的影响可忽略不计。然后提出了改进的半赫兹方法,并对不同接触位置的接触斑形状和应力分布进行对比分析,结果表明:多边形波长大于65 mm时,改进的半赫兹方法在与非赫兹方法的结果保持一致的同时,大大缩短了计算时间。  相似文献   

16.
目的 基于低速重载工程机械运行速度慢、载重量大等特点,对其进行定义,并提出关于其轮轨接触问题的解决办法.方法 利用APDL语言建立轮轨接触分析参数化模型,通过非线性有限元接触分析技术对无轮缘车轮和轨道与有轮缘车轮和轨道进行对比分析;并通过Von-Mises应力云图对安装误差引起的偏斜运行轮轨结构进行分析.结果 在轮轨结...  相似文献   

17.
利用ANSYS有限元分析软件对轮轨接触进行了弹塑性静力分析,模拟了轮轨真实的几何形状和边界条件,分别研究了轴重、枕木支撑位置对接触应力的影响,并对各种参数的变化规律进行了分析,得出了轮轨间接触应力及塑性应变的分布规律。  相似文献   

18.
机车车辆轮轨接触问题的数值模拟   总被引:2,自引:0,他引:2  
按照机车、车辆车轮与标准轨道的实际几何关系建立了三维有限元模型,并采用有限元参数二次规划法求解轮轨弹塑性接触问题.通过弹塑性接触计算,得到了大量的轮轨接触力、接触状态和轮轨应力的数据,根据计算结果分析比较了机车轮轨接触和车辆轮轨接触的区别,对轮缘贴靠钢轨形成两点接触时的接触情况进行了初步分析.  相似文献   

19.
随着高速铁路的不断发展,轮轨滚动接触问题愈加突出,因此,倍受国内外学者的关注。轮轨滚动接触问题涉及的范围较广且较为复杂,并在一定程度上引发轮轨的疲劳损伤和波浪形磨损等破坏形式。基于理论分析和试验研究两个方面,着重对轮轨滚动接触的发展历史和研究现状进行了总结和分析,并综述了轮轨滚动接触疲劳和钢轨波浪形磨损的研究现状。从现有的研究成果来看,轮轨滚动接触理论已相对较为完善,而对于高速铁路轮轨滚动接触疲劳损伤的形成机理研究仍未形成系统的理论体系。  相似文献   

20.
运用Proe、Hypermesh建立了二维轮轨接触有限元模型,通过动力分析有限元程序AN-SYS/LS-DYNA,采用隐式显式分析方法计算了车轮椭圆化情况下的轮轨滚动接触.仿真结果分析表明:当椭圆化车轮长轴与轨道接触时,轮轨垂向接触力最小,当椭圆化车轮短轴与轨道接触时,轮轨垂向接触力最大,这样将导致车轮的椭圆化加剧,进而轮轨垂向接触力也增大,周而复始,会造成对车轮和轨道的破坏.轮轨垂向接触力随着车轮椭圆化的加剧和车速的提高而增大,且椭圆化波深比速度的影响更为显著.行驶路程相同的情况下,椭圆化车轮的车轴垂向加速度比新轮的要大,而且随着车速的提高,车轴垂向加速度也随之增大.车速300 km/h时椭圆化车轮最大允许波深为1.25 mm,350 km/h时椭圆化车轮最大允许波深为1 mm,超过上述限度时,需对轮对进行镟修.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号