共查询到17条相似文献,搜索用时 78 毫秒
1.
稀疏信号处理是研究欠定盲源分离的主要手段。本文介绍了稀疏分量分析的基本模型,在此基础上深入分析并讨论了基于稀疏表示的盲源分离算法。该算法对实际欠定混叠盲信号分离有重要的意义。 相似文献
2.
基于两路人体心声信号的专用检测平台,提出了一种针对双声道心音信号的欠定盲分离方法。首先对数据点进行频域聚类计算,利用观测信号中稀疏信号所表现出的特征对源信号个数进行分析,以实现对混叠矩阵的估计;然后根据观测信号的散列图分离出其中一路或多路源信号,从而使观测信号变为适定或者超定;最后用现有的适定或者超定盲分离方法分离剩余源信号。分别对一组人工混合信号和实际检测的双声道心声信号进行欠定盲分离实验,验证了本方法的有效性和可行性。 相似文献
3.
针对目前欠定盲源信号分离在源信号不充分稀疏的情况下分离精度较低的问题,提出一种基于压缩感知和优化算法的欠定盲源信号分离方法.首先分析了欠定盲源信号分离和压缩感知问题的等价性,并建立基于压缩感知的欠定盲源信号分离的数学模型;然后以分离信号的稀疏性和互相关性来建立目标函数,并通过使用压缩感知和优化算法来实现欠定盲源信号的分离;最后对语音信号进行了仿真实验.实验结果表明,在源信号不充分稀疏的情况下,利用这种方法得到的分离信号与源信号的平均相似系数为0.990 3,由此可见这种方法是一种有效的、分离精度较高的分离方法.这也为欠定盲源信号分离问题的研究提供了一种新的途径和手段. 相似文献
4.
语音信号处理是欠定盲源分离的一个重要研究领域。本文基于混合语音的基本模型,分析并讨论了两种欠定盲源分离方法在语音信号处理中的应用思路。欠定混合语音信号分离更接近实际情况,有着重要的研究意义。 相似文献
5.
欠定盲源分离技术是一个热门的研究领域,其广泛应用于信息理论、神经网络、统计信号处理、生物医学工程等领域。在大多数实际情况下,当接收到由多路源信号叠加而成的观测信号时,源信号的数量大于观测时长,采用通常的盲源分离技术难以恢复源信号。着重讨论基于"两步法"的欠定盲源分离问题;该分离技术分两个阶段,第一阶段采用基于粒子群算法的K-均值聚类改进算法求解混合矩阵,将蚁群算法信息素的概念应用其中;第二阶段采用最短路径法求解L1-范数模型获得源信号的估计。相比于现存的二阶段方法,该方法可达到更高的信号重构信噪比。 相似文献
6.
基于CS与K-SVD的欠定盲源分离稀疏分量分析 总被引:1,自引:0,他引:1
为了提高盲源分离的准确率,提出了结合压缩感知(CS)与K均值奇异值分解(K-SVD)的稀疏分量分析方法进行盲源分离.首先,分析欠定盲源分离估计源信号与压缩感知问题的等价性,建立压缩感知框架;其次,在此框架下利用K-SVD方法训练稀疏字典;最后利用经典追踪算法计算得到稀疏分量,结合传统的两步法,进行盲源分离.大量实验表明... 相似文献
7.
提出一种混沌混合信号欠定盲源分离的方法.首先讨论了混沌信号的特征,利用EMD对信号进行分层并且得到独立子波函数,然后把独立子波函数加入到单路混沌信号中从而实现混沌信号的盲分离;最后通过混沌信号的分离实验,证明了本方法的有效性和可靠性.该方法可以很好的检测系统或电路中是不是产生了混沌现象,进而采取相应的措施,利用或抑制混... 相似文献
8.
欠定盲信道估计是欠定盲源分离的关键组成部分,其估计精度直接影响到源信号的估计精度.基于充分稀疏假设,在K均值聚类的基础上,提出一种新的欠定盲信道估计算法——K均值与主成分分析方法(KM-PCA算法).该算法首先对观测数据进行K均值聚类,然后对聚类分析结果分别进行主成分分析,修正其聚类中心,从而提高混叠矩阵的估计精度.采... 相似文献
9.
在源信号在非充分稀疏条件下,提出了一种改进的两步法欠定盲源分离算法.与现有的大多数稀疏分量分析算法法都是假设源信号是充分稀疏不同,该算法放宽了源信号的稀疏性.与此同时,该算法能够估计出聚类空间的个数,能够克服源信号个数未知的情况.模糊划分矩阵的应用更加有利于源信号的分离.仿真结果表明了该算法的有效性. 相似文献
10.
结合现有的单路混叠盲分离算法和心音信号的周期特性,提出了一种基于dwt_ica的单路单周期心音混叠信号欠定盲分离算法.该算法首先得到一组单周期独立心音子波,然后把该独立心音子波加入到一个单路单周期心音混叠信号中,从而将一路信号变成一个多路信号,接着再利用ICA方法分离该多路信号,可获得源心音信号的一种估计.心音混叠信号的盲分离仿真实验表明,该算法是行之有效的. 相似文献
11.
非完全稀疏性的盲源分离(BSS)的难点在于源的恢复。现有的最短路径法、l1范数解和SSDP算法仅适用于稀疏源而不适宜非完全稀疏源。本文针对两个观测信号的情形,提出了二维的统计非稀疏准则(2d-SNSDP)。该算法将信号分成若干区间,用源的相关性判断各区间是否非完全稀疏,并在非完全稀疏和稀疏的区间采取不同的源恢复策略。它克服了传统算法的不足,改善了估计的源。最后,语音信号的仿真实验显示它的性能和实用性。 相似文献
12.
针对复杂机械系统振源数未知的欠定盲源分离(UBSS)问题,为提高欠定盲源分离的性能,提出一种基于平行因子分析(PARAFAC)和核一致诊断(CORCONDIA)的欠定盲源数估计算法.该算法利用二阶非平稳源分离的基本思想,将中心化传感器数据分成不重叠的数据块,计算各数据块的单一时延协方差矩阵并叠加成三阶张量,即平行因子模型.利用核一致诊断算法估计PARAFAC模型的最佳组分数,从而得到机械系统的振源数.仿真实验结果表明:该算法可从非平稳欠定混合信号中准确估计振源数目.将所提算法应用于多机振动源实验,结果进一步验证了该方法的有效性. 相似文献
13.
为了提高欠定盲源分离问题中混合矩阵的估计精度,提出了基于时频域混合信号数据点的方向幅值比的欠定盲源分离算法.为了充分利用复混合信号数据点的相位信息,引入复信号的方向幅值比,通过复混合信号的方向幅值比的方差、均值、分布密度实现单源点的精确提取.将分布在直线方向上的单源点进行单位投影化处理,通过聚类分析获得混合矩阵的列元素之比,从而实现混合矩阵的估计.利用匹配追踪算法将源信号进行重构.经仿真验证,提出的算法相较于对比算法,可以获得更高精度的混合矩阵与分离信号. 相似文献
14.
针对基于稀疏分量分析的欠定盲源分离问题,提出一种基于优化支撑的稀疏度自适应子空间追踪(OS-SASP)算法.通过引入自适应思想,克服传统子空间追踪(SP)算法对稀疏度的依赖;同时在迭代开始之前通过离散余弦变换的能量集中特性确定最小支撑集的大小,对最小支撑集求并集获得优化支撑集,优化支撑集联合迭代过程中的候选集来定位最佳原子,提高源信号的恢复精度.仿真结果表明,OS-SASP算法在一维稀疏信号与语音信号的欠定盲源恢复过程中表现出良好的性能. 相似文献
15.
基于EMD改进算法的欠定混合盲分离 总被引:1,自引:0,他引:1
为改善拟合效果,针对经验模态分解(empirical mode decomposition,EMD)算法存在的端点效应,提出一种改进的EMD算法——端点极值延拓方法.利用改进的EMD算法对观测信号进行分解,将分解分量连同之前的观测信号构成新的观测信号,从而将欠定情况转化为超定情况,最后利用独立成分分析(independent component analysis,ICA)算法得到源信号的估计.通过仿真实验对比,证明了本文算法的有效性. 相似文献
16.
互累积量迫零法信号源盲分离 总被引:1,自引:1,他引:1
利用高阶累积量进行信号源盲分离的已有算法都需要进行复杂的矩阵代数运算,且这类算法不具备所希望的等变特性,对于病态混合矩阵的盲分离问题可能无法求解,通过利用迭代算法迫使经过非线性函数变换的混合信号互累积量矩阵对角化的方法,提出了一种新的基于高阶累积量的具有等变特性的信号源盲分离算法,该算法所采用的累积量矩阵对角化方法不依赖于混合矩阵,也不需要对累积量矩阵进行代数变换,并且所使用的迭代算法不需要对任何变量求导,因此非常简单,易于实现;同时算法还具有对未经去除均值的混合信号直接进行分离的能力。 相似文献
17.
自适应最优保存遗传算法在盲信号分离中的应用 总被引:4,自引:0,他引:4
独立分量分析方法(ICA)是信号处理的一种新技术。其基本目标是寻找线性变换矩阵,将观测的多维混合信号进行变换,变换后的输出信号各分量之间尽可能统计独立。将遗传算法与ICA相结合,提出基于GA的盲分离算法,并分析了它们的收敛性和稳态性能。其有效性为仿真结果所证实。 相似文献