首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of HCO 3 and Cl transport across basolateral membranes from rat ileum were investigated in isolated vesicles by means of uptake experiments. Neither Cl/HCO 3 exchanger nor Na+–(HCO 3 )n cotransport seem to be present in ileal basolateral membranes. Moreover Cl uptake is unaffected bycis Na+ and/or K+ gradients, indicating the absence of Na+–Cl, K+–Cl and Na+–K+–2Cl symport activity. An electrically conductive pathway seems to be responsible for both HCO 3 and Cl fluxes. Evidence is also given for the presence of a Na+/H+ exchanger at the basolateral pole of ileal enterocytes.  相似文献   

2.
Evidence has accumulated recently about the importance of alterations in Na+ channel function and slow myocardial conduction for arrhythmias in the infarcted and failing heart. The present study tested a hypothesis that Na+ current (INa/C) density decreases in chronic heart failure (HF) and that Na+ channel (NaCh) functional density can be restored by long-term therapy with carvedilol, a mixed α- and β-adrenergic blocker. Studies were performed using a canine model of chronic HF produced in dogs by sequential intracoronary embolizations with microspheres. HF developed approximately 3 months after the last embolization (left ventricle, LV, ejection fraction = 28 ± 1 %). Ventricular cardiomyocytes (VCs) were isolated enzymatically from LV mid-myocardium, and INa was measured by whole-cell patch-clamp. The maximum INA/C was decreased in failing (n = 19) compared to normal (n = 12) hearts (33.1 ± 1.6 vs 48.5 ± 5.1 pA/pF, mean ± SE, p < 0.001). The steady-state inactivation and activation of INa remained unchanged in failing compared to normal hearts. Long-term treatment with carvedilol (1 mg/kg, twice daily for 3 months) normalized INa/C in dogs with HF. INa/C in HF dogs (n = 6) treated with carvedilol was higher compared to that of non-treated HF dogs (n = 6) (49.4 ± 0.9 vs 29 ± 4.8 pA/pF, p < 0.007). In vitro culture of VCs of failing hearts for 24 h did not restore INa/C. However, INa/C was partially restored when VCs were incubated for 24 h with BAPTA-AM, an intracellular Ca2+ buffer. Thus, we conclude that experimental chronic HF in dogs results in down-regulation of the functional density of NaCh that can be restored by long-term therapy with carvedilol. The mechanism of NaCh down-regulation in HF may be linked to poor Ca2+ handling in this stage of disease. Received 4 June 2002; received after revision 1 July 2002; accepted 17 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

3.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

4.
Summary Myocardial isoproterenol-stimulated adenylate cyclase, Na+, K+-ATPase and K+, Ca++-ATPase activities are elevated in the spontaneously hypertensive rat and can be lowered by methimazole-induced hypothyroidism which also prevents the development of hypertension. Although thyroid hormone levels are similar between untreated SHRs and WKY rats, the thyroid is apparently necessary for the expression of spontaneous hypertension.Acknowledgments. Supported by North Carolina Heart Grant No. 40301 and a grant from Sigma Xi.  相似文献   

5.
Na(+)-dependent D-glucose and D-galactose transport were studied in brush-border membrane vesicles (BBMVs) from kidney cortex isolated from both spontaneously hypertensive rats (SHR) and their normotensive genetic control Wistar-Kyoto (WKY) rats. Initial rates and accumulation ratios of Na(+)-dependent D-glucose and D-galactose transport were significantly lower in SHR compared with WKY, the observed decreases being similar for both substrates. To explain the reduction in sugar transport by renal BBMVs, the density of Na(+)-dependent sugar cotransporters was studied in BBMVs from kidney cortex isolated from SHR and WKY rats. Phlorizin-specific binding and Western blot analysis indicated a reduction in the density of the cotransporters in SHR relative to WKY rats. This reduction was similar to those found for the initial rates and accumulation ratios for D-glucose and D-galactose in SHR. Na+ uptake, studied using 22Na+, was significantly increased in SHR, so the observed reduction in sugar transport could be due to disruption of the Na+ gradient between renal BBMVs in SHR. Furthermore, a significant decrease in the activity of Na(+)-K(+)-ATPase was observed in SHR. In conclusion, changes in the density of the Na(+)-dependent sugar cotransporter and in the Na+ gradient across the brush-border membranes might be involved in the observed reduction in sugar transport by renal BBMVs from SHR.  相似文献   

6.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

7.
Summary The macrotetralid antibiotic Dinactin uncouples phosphorylation from electron transport in illuminated chloroplasts in the presence of Na+ at lower concentrations than in K+, while the light-induced proton uptake is more inhibited in a medium with K+ than with Na+. The large volume changes of whole chloroplasts in the light and after addition of Dinactin are parallel to the amount of K+ in the chloroplasts.

Die Resultate der vorliegenden Arbeit entstanden zusammen mitElisabeth Bosshard-Heer, H. R. Hohl, Ch. Pflugshaupt undIngrid Specht-Jürgensen. Wir danken dem Schweizerischen Nationalfonds für die grosszügige Unterstützung.  相似文献   

8.
The Na+,K+-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na+ ions out of the cell and of K+ ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na+,K+-ATPase, recent work has suggested additional roles for Na+,K+-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na+,K+-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na+,K+-ATPase as a signal transducer, but also briefly discuss other Na+,K+-ATPase protein–protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.  相似文献   

9.
Summary In biotin-deficient rats, a decreased intestinal transport of Na+, H2O and L-phenylalanine, and no transport differences of 3-O-methyl-D-glucose were observed. The lower Na+ and L-phenylalanine transport appears to be referable to a decreased energy availability and probably not to the lack of a carrier.  相似文献   

10.
Summary In isolated perfused posterior gills ofE. sinensis acclimated to fresh water, NH 4 + may be used as a counter-ion for Na+ active transport. This Na+/NH 4 + coupled transport can, however, only account for a small part of the Na+ total active influx.Chargé de Recherches du FNRS-Acknowledgments. This work has been aided by a grant crédit aux chercheurs from the FNRS and by a grant No. 2.4511.76 from the FRFC.  相似文献   

11.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

12.
Summary The effect of mycotoxin (T-2 toxin) on catecholamines and Na+, K+-ATPase activities in rat epididymis has been evaluated. Dopamine and norepinephrine levels were significantly elevated in the caput and corpus regions whereas their levels remained unchanged in the caudal part of the epididymis. Na+, K+-ATPase activity was significantly increased in all the three regions of rat epididymis as a result of the toxin treatment. These changes may suggest an adverse effect on epididymal functions in rats.  相似文献   

13.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

14.
Summary Synthesis of prostaglandin E2 by renal medulla from SHR and WKY rats was compared during early postnatal development. Although arterial blood pressure was significantly higher in SHR as early as 6 weeks of age, no difference in renal medullary prostaglandin synthesis was observed.Supported in part by a grant from the michigan Heart Association and NIH grant AM-10913.  相似文献   

15.
Summary Na+, K+-adenosinetriphosphatase (Na+, K+-ATPase) activity was decreased in liver plasma membranes from rats in which cholestasis had been induced by i.v. administration of sodium taurolithocholate (5 moles/100 g b. wt). Incubation of liver plasma membranes with taurolithocholate (10–1300 M) caused significant and dose dependent reductions of Na+, K+-ATPase activity at taurolithocholate concentrations above 100 M. These findings lend support to the hypothesis that cholestasis induced by monohydroxy bile acids is at least partially the result of an inhibition of hepatic Na+, K+-ATPase activity.This work was supported by the Swiss National Science Foundation.The authors thank Mr H. Sägesser and Miss B. Schütz for technical assistance.  相似文献   

16.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

17.
The molecular recognition hypothesis for peptides is that binding sites of ligands and their receptors are encoded by short, complementary segments of DNA. A corollary hypothesis for nonpeptide ligands posited here is that peptide replicas may be encoded by the DNA segment complementary to the receptor binding sites for nonpeptides. This corollary was tested for digitalis, a family of cardiotonic and natriuretic steroids including ouabain. A hexapeptide (ouabain-like peptide, OLP) complementary to a ouabain binding site on sodium/potassium dependent adenosine triphosphatase (Na+ K+ ATPase) exhibited activity in a digitalis bioassay. Antisera to the complementary peptide (OLP) stained the neurohypophysis in an immunocytochemical procedure. The complementary peptide was found to share an identical 4-amino acid region with the 39-amino acid glycopeptide moiety of the vasopressin-neurophysin precursor. This glycopeptide was isolated from pituitary extracts; it exhibited digitalis-like activity in the submicromolar range and cross-reacted with complementary peptide antibodies. Another digitalis-like substance with high activity also was detected in the extracts. These results demonstrate that the vasopressin-neurophysin glycopeptide has digitalis-like activity. Moreover, the findings are consistent with the hypothesis that peptide mimetics of nonpeptides are encoded in the genome. Received 23 November 1998; received after revision 18 January 1999; accepted 19 February 1999  相似文献   

18.
Proinsulin-connecting peptide (C-peptide) exerts physiological effects partially via stimulation of Na+, K+-ATPase. We determined the molecular mechanism by which C-peptide stimulates Na+, K+-ATPase in primary human renal tubular cells (HRTCs). Incubation of the cells with 5 nM human C-peptide at 37°C for 10 min stimulated 86Rb+ uptake by 40% (p<0.01). The carboxy-terminal pentapeptide was found to elicit 57% of the activity of the intact molecule. In parallel with ouabain-sensitive 86Rb+ uptake, C-peptide increased subunit phosphorylation and basolateral membrane (BLM) abundance of the Na+, K+-ATPase 1 and 1 subunits. The increase in BLM abundance of the Na+, K+-ATPase 1 and 1 subunits was accompanied by depletion of 1 and 1 subunits from the endosomal compartments. C-peptide action on Na+, K+-ATPase was ERK1/2-dependent in HRTCs. C-peptide-stimulated Na+, K+-ATPase activation, phosphorylation of 1-subunit and translocation of 1 and 1 subunits to the BLM were abolished by a MEK1/2 inhibitor (20 M PD98059). C-peptide stimulation of 86Rb+ uptake was also abolished by preincubation of HRTCs with an inhibitor of PKC (1 M GF109203X). C-peptide stimulated phosphorylation of human Na+, K+-ATPase subunit on Thr-Pro amino acid motifs, which form specific ERK substrates. In conclusion, C-peptide stimulates sodium pump activity via ERK1/2-induced phosphorylation of Thr residues on the subunit of Na+, K+-ATPase.Received 15 June 2004; received after revision 14 September 2004; accepted 14 September 2004  相似文献   

19.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

20.
Summary In the isolated urinary bladder of the toad, 10–5–10–4M orthovanadate produces inhibition of the active transport of Na+ and H+ ions as well as of antidiuretic hormone-mediated osmotic flow of water. Since transport of H+ ions and osmotic water flow are not inhibited when (Na++K+)-ATPase is inhibited by ouabain, biological actions of vanadate are not necessarily related to inhibition of (Na++K+)-ATPase.This research was supported by grant AM-14915 from the National Institutes of Helath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号