首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B Schittek  K Rajewsky 《Nature》1990,346(6286):749-751
A basic feature of T-cell dependent antibody responses is the generation of memory: on a second contact with an antigen a secondary response is produced in which somatically mutated antibodies with increased affinity are synthesized. Memory can persist for long periods of time. This has classically been ascribed to the generation of long-lived memory B cells. However, it is also possible that persisting antigen, on which memory may depend, maintains a population of cycling memory cells under continuous selection or continuously recruits newly generated B cells into the memory B-cell compartment. To discriminate between these mechanisms we have now directly analysed the proliferative activity in the memory B-cell compartment of the mouse by measuring bromodeoxyuridine incorporation in vivo. We show that after an initial phase of extensive proliferation after primary immunization, memory cells can persist in the organism for extended periods of time in the absence of cell division.  相似文献   

2.
Bcl-2 maintains B cell memory   总被引:22,自引:0,他引:22  
The number of lymphocytes in an animal is remarkably constant despite antigen-driven proliferation and a high rate of B-cell lymphopoiesis. This reflects the relatively brief lifespan of many newly generated B cells and argues for a well-regulated death mechanism. Even so, a secondary immune response can be generated years after a primary exposure to antigen. Antigen that might restimulate B cells persists for extended periods on follicular dendritic cells in the light zone of germinal centres. Antigen-binding B cells have also been found months after the end of obvious cell division. The precise signal that enables certain B cells to emerge as long-term surviving memory cells is unknown. Bcl-2, an inner mitochondrial membrane protein, blocks programmed cell death in B cells. We report here that this proto-oncogene maintains immune responsiveness. Transgenic mice overproducing Bcl-2 have a long-term persistence of immunoglobulin-secreting cells and an extended lifetime for memory B cells.  相似文献   

3.
Germinal centres are specialized structures wherein B lymphocytes undergo clonal expansion, class switch recombination, antibody gene diversification and affinity maturation. Three to four antigen-specific B cells colonize a follicle to establish a germinal centre and become rapidly dividing germinal-centre centroblasts that give rise to dark zones. Centroblasts produce non-proliferating centrocytes that are thought to migrate to the light zone of the germinal centre, which is rich in antigen-trapping follicular dendritic cells and CD4+ T cells. It has been proposed that centrocytes are selected in the light zone on the basis of their ability to bind cognate antigen. However, there have been no studies of germinal-centre dynamics or the migratory behaviour of germinal-centre cells in vivo. Here we report the direct visualization of B cells in lymph node germinal centres by two-photon laser-scanning microscopy in mice. Nearly all antigen-specific B cells participating in a germinal-centre reaction were motile and physically restricted to the germinal centre but migrated bi-directionally between dark and light zones. Notably, follicular B cells were frequent visitors to the germinal-centre compartment, suggesting that all B cells scan antigen trapped in germinal centres. Consistent with this observation, we found that high-affinity antigen-specific B cells can be recruited to an ongoing germinal-centre reaction. We conclude that the open structure of germinal centres enhances competition and ensures that rare high-affinity B cells can participate in antibody responses.  相似文献   

4.
D A Nemazee  K Bürki 《Nature》1989,337(6207):562-566
B lymphocytes can be rendered specifically unresponsive to antigen by experimental manipulation in vivo and in vitro, but it remains unclear whether or not natural tolerance involves B-cell tolerance because B cells are controlled by T lymphocytes, and in their absence respond poorly to antigen (reviewed in ref. 7). In addition, autoantibody-producing cells can be found in normal mice and their formation is enhanced by B-cell mitogens such as lipopolysaccharides. We have studied B-cell tolerance in transgenic mice using genes for IgM anti-H-2k MHC class I antibody. In H-2d transgenic mice about 25-50% of the splenic B cells bear membrane immunoglobulin of this specificity, and abundant serum IgM encoded by the transgenes is produced. In contrast, H-2k x H-2d (H-2-d/k) transgenic mice lack B cells bearing the anti-H-2k idiotype and contain no detectable serum anti-H-2k antibody, suggesting that very large numbers of autospecific B cells can be controlled by clonal deletion.  相似文献   

5.
Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells   总被引:1,自引:0,他引:1  
Whereas naive T cells migrate only to secondary lymphoid organs, activation by antigen confers to T cells the ability to home to non-lymphoid sites. Activated effector/memory T cells migrate preferentially to tissues that are connected to the secondary lymphoid organs where antigen was first encountered. Thus, oral antigens induce effector/memory cells that express essential receptors for intestinal homing, namely the integrin alpha4beta7 and CCR9, the receptor for the gut-associated chemokine TECK/CCL25 (refs 6, 8, 9). Here we show that this imprinting of gut tropism is mediated by dendritic cells from Peyer's patches. Stimulation of CD8-expressing T cells by dendritic cells from Peyer's patches, peripheral lymph nodes and spleen induced equivalent activation markers and effector activity in T cells, but only Peyer's patch dendritic cells induced high levels of alpha4beta7, responsiveness to TECK and the ability to home to the small intestine. These findings establish that Peyer's patch dendritic cells imprint gut-homing specificity on T cells, and thus license effector/memory cells to access anatomical sites most likely to contain their cognate antigen.  相似文献   

6.
Antigen-specific interaction between T and B cells   总被引:26,自引:0,他引:26  
A Lanzavecchia 《Nature》1985,314(6011):537-539
It is well known that B cells require T-cell help to produce specific antibody. Classic experiments suggested that antigen-specific helper T cells interact with antigen-specific B cells via an antigen 'bridge', the B cells binding to one determinant on an antigen molecule (the 'hapten'), while the T cells at the same time recognize another determinant (the 'carrier'). T-helper cells bind specifically to antigen-presenting cells (APC), which have picked up and processed the appropriate antigen, and this interaction, like the interaction of T-helper cells with specific B cells, is restricted by products encoded by the major histocompatibility complex (MHC). Whereas conventional APC such as macrophages display no binding specificity for antigen, B cells have clonally distributed antigen-specific surface immunoglobulin receptors which would be expected to enhance their capacity to present antigen to T cells. These findings are difficult to reconcile with the simple 'antigen bridge' mechanism of interaction, because it is hard to visualize how the bimolecular complex (processed antigen plus MHC molecule) on the APC surface can resemble the trimolecular complex (antigen bound to surface immunoglobulin plus MHC molecule) on the B-cell surface. To address this problem, we have cloned and immortalized human antigen-specific B cells with Epstein-Barr virus (EBV) and analysed their interaction with T-cell clones specific for the same antigen. We report here that surface immunoglobulin is indeed involved in the uptake and concentration of antigen, allowing specific B cells to present antigen to T cells with very high efficiency. However, the antigen must first be internalized and processed by specific B cells and it is then presented to T cells in an MHC-restricted manner indistinguishable from that characteristic of conventional APC.  相似文献   

7.
Molecular characterization of single memory B cells   总被引:17,自引:0,他引:17  
Primary antigenic exposure results in an initial antibody response and the T cell-dependent induction of B-cell memory. Memory B-cell differentiation is characterized by somatic hypermutation in antibody variable region genes (V) and selection of B cells expressing high-affinity variants of this antigen receptor. Despite our current understanding of B-cell memory, the origin of memory B cells and the regulation of their differentiation remain elusive. This is largely due to the difficulties in observing and purifying this minor component of the immunized spleen. Further, molecular characterization of memory B cells requires hybridoma formation which restricts analyses to only those clones capable of fusion and does not allow isolation of cells in a normal physiological state. We have therefore developed a unique system which allows isolation and unambiguous enumeration of IgG1+ memory B cells, based on six-parameter flow cytometry, secretion of antibody in clonal cultures and analysis of clonally expressed V genes using the polymerase chain reaction. Here we report that single IgG1+ antigen-binding B cells from an early secondary immune response proliferate in lipopolysaccharide-driven microcultures and produce antigen-specific IgG1 antibodies. Individual B-cell clones in these cultures express somatically mutated heavy chain V genes, confirming their designation as memory B cells. Although isolated memory B cells undergo extensive proliferation in vitro, V gene sequence analysis of their individual progeny shows that further hypermutation does not occur.  相似文献   

8.
To trigger class II-restricted T cells, antigen presenting cells have to capture antigens, process them and display their fragments in association with class II molecules. In most species, activated T cells express class II molecules; however, no evidence has been found that these cells can present soluble antigens. This failure may be due to the inefficient capture, processing or display of antigens in a stimulatory form by T-cells. The capture of a soluble antigen, which is achieved by nonspecific mechanisms in macrophages and dendritic cells, can be up to 10(3) times more efficient in the presence of surface receptors, such as surface immunoglobulin on B cells that specifically bind antigen with high affinity. We asked whether T cells would be able to present soluble antigens that bind to their own surface molecules. Here we show that such antigens can be effectively processed and presented by both CD4+- and CD8+-bearing human T cells. This indicates that T cells are fully capable of processing and displaying antigens and are mainly limited in antigen presentation by their inefficiency at antigen capture.  相似文献   

9.
R Tees  M H Schreier 《Nature》1980,283(5749):780-781
An antibody response is the end result of complex interactions among T cells, adherent cells and B cells. An understanding of the interactions involved has proved difficult as pure populations of these cells have not been available. By making use of T-cell growth factor, we were able to grow normal helper T cells specific for heterologous erythrocytes. Because specificity and mechanism of action of these cells had been demonstrated solely in culture, we sought to establish their competence in the whole animal. We have therefore examined here whether antigen-specific helper T cells, maintained in culture over long periods, would enable syngeneic nude mice to respond to T-cell dependent antigens. The results show that specific helper T cells, propagated in serum-free medium in vitro for up to 15 months, can selectively and specifically reconstitute syngeneic C57BL/6J nu/nu mice. Depending on the specificity of the injected helper T cells, such nude mice could respond to sheep red blood cells (SRC) but not to horse red blood cells (HRC) and vice versa. The magnitude of the response was comparable to that of normal mice and could exceed it by almost 10-fold, depending on the source and number of injected helper T cells.  相似文献   

10.
M A Harvey  L Adorini  A Miller  E E Sercarz 《Nature》1979,281(5732):594-596
The existence of shared idiotypic determinants on the surfaces of T and B cells is now firmly established, suggesting that on both these cell types immunoglobulin variable regions are expressed which presumably function as antigen receptors. In most systems this has been inferred through the use of anti-idiotypic antibody instead of antigen to induce either helper or suppressor T cells. Recent evidence demonstrates that antigen-specific suppressor or helper factors can also bear idiotypic determinants. It is possible that these factors represent released receptors or portions of receptors. We show here the direct elimination of an antigen-induced T-suppressor population by an anti-idiotypic serum and complement. These suppressor T cells as well as the idiotypic population used to generate the antiserum are each specific for the same limited portion of the multi-determinant antigen, lysozyme. Apparently, these suppressor cells are restricted in specificity as well as share idiotypy with antibodies of the same specificity.  相似文献   

11.
Can B cells turn on virgin T cells?   总被引:16,自引:0,他引:16  
O Lassila  O Vainio  P Matzinger 《Nature》1988,334(6179):253-255
The first event in the initiation of an immune response is the capture and presentation of antigen to T cells. Such presentation involves two distinct steps: (1) display of the antigen, which requires uptake, processing and re-expression of the antigen in association with MHC molecules on the presenting cell surface; and (2) triggering, in which the presenting cell provides signals leading to the activation of the responding T cell. Two sorts of cells can capture antigens, the 'professional' antigen-presenting cells (APCs) such as dendritic cells and macrophages, and the B cells. Both types of cells can display antigens and the APCs are known to be able to trigger resting T cells. But despite in vitro evidence that certain B-cell types can reactivate previously-activated T cells, it is not yet clear whether a B cell can initiate an immune response by providing the signals necessary to activate a resting T cell. We reasoned that resting B cells should not have this capacity because of the problems this would present with tolerance to self idiotypes. By exploiting the unique properties of the avian haematopoietic system, we have examined the presenting capacity of B cells in vivo and found that resting B cells are indeed unable to activate resting T cells.  相似文献   

12.
In proliferating B lymphocytes, somatic mutation of rearranged antibody variable (V)-region genes occurs at high frequency and may have a key role in the selection of these cells. It is of interest in this context to learn in which way single mutations can affect antigen binding and/or idiotypic specificity of an antibody. Previous investigations have analysed spontaneous mutants of myeloma and hybridoma cells in which the mutation affected the antigen-binding specificity of the antibody. Here we describe an antibody mutant that has fully retained antigen-binding specificity but has lost or drastically changed all V-region antigenic determinants (idiotopes) of the wild type as defined by monoclonal anti-idiotope antibodies. The mutant phenotype is generated by a glycine to arginine exchange in the middle of the diversity (D) element, at position 103 of the heavy chain.  相似文献   

13.
A chemokine-driven positive feedback loop organizes lymphoid follicles   总被引:46,自引:0,他引:46  
Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types of B-cell-rich compartment: follicles containing follicular dendritic cells, and areas lacking such cells. Using gene-targeted mice, we establish that B-lymphocyte chemoattractant (BLC/BCA1) and its receptor, CXCR5, are needed for B-cell homing to follicles in lymph nodes as well as in spleen. We also find that BLC is required for the development of most lymph nodes and Peyer's patches. In addition to mediating chemoattraction, BLC induces B cells to up-regulate membrane lymphotoxin alpha1beta2, a cytokine that promotes follicular dendritic cell development and BLC expression, establishing a positive feedback loop that is likely to be important in follicle development and homeostasis. In germinal centres the feedback loop is overridden, with B-cell lymphotoxin alpha1beta2 expression being induced by a mechanism independent of BLC.  相似文献   

14.
Does T-cell tolerance require a dedicated antigen-presenting cell?   总被引:15,自引:0,他引:15  
P Matzinger  S Guerder 《Nature》1989,338(6210):74-76
Almost 30 years ago Burnet proposed that the immune system maintained self-tolerance by deleting autoreactive lymphocytes. Recently it has become clear that for T cells this step occurs in the thymus, where developing T cells first express their antigen-specific receptors. Here a T-cell which encounters its antigen disappears--if it is not dead, it at least stops expressing its receptors. In the periphery by contrast, encounter with antigen leads to activation and proliferation of the responding T-cell. There are two possible explanations for this difference. Either the antigen-presenting cells in the thymus are different from those in the periphery and instead of producing positive signals they directly or indirectly kill the thymocytes; or the T cells themselves are different, and like immature B cells, may die after encounter with antigen. We tested the first possibility and found that dendritic cells from spleen, which are the most potent activators of mature T cells, are also the most potent inactivators of young developing T cells. Thus it is not the antigen-presenting cell which determines whether a T-cell responds or dies, but the T-cell itself or its thymic environment.  相似文献   

15.
HLA-DR antigens, the human equivalent of mouse I region-associated or Ia products, are polymorphic cell surface sialoglycoproteins involved in initiation of the immune response. Their expression is normally restricted to B lymphocytes, macrophages, dendritic and other antigen-presenting cells and vascular endothelium and possibly some cells of the mucosa lining body cavities. HLA-DR expression can be modified during cell differentiation; B lymphocytes become negative on maturing to plasma cells and human T lymphocytes acquire these antigens when activated in vitro or in vivo. We report here that human thyroid follicular cells which are normally negative for HLA-DR molecules, can be induced to express these antigens when cultured with phytohaemagglutinin (PHA), concanavalin A (Con A) or pokeweed mitogen (PWM). These lectins exert their action directly on the thyroid cells with no concomitant mitogenic effect.  相似文献   

16.
Blander JM  Medzhitov R 《Nature》2006,440(7085):808-812
Dendritic cells constitutively sample the tissue microenvironment and phagocytose both microbial and host apoptotic cells. This leads to the induction of immunity against invading pathogens or tolerance to peripheral self antigens, respectively. The outcome of antigen presentation by dendritic cells depends on their activation status, such that Toll-like receptor (TLR)-induced dendritic cell activation makes them immunogenic, whereas steady-state presentation of self antigens leads to tolerance. TLR-inducible expression of co-stimulatory signals is one of the mechanisms of self/non-self discrimination. However, it is unclear whether or how the inducible expression of co-stimulatory signals would distinguish between self antigens and microbial antigens when both are encountered by dendritic cells during infection. Here we describe a new mechanism of antigen selection in dendritic cells for presentation by major histocompatibility complex class II molecules (MHC II) that is based on the origin of the antigen. We show that the efficiency of presenting antigens from phagocytosed cargo is dependent on the presence of TLR ligands within the cargo. Furthermore, we show that the generation of peptide-MHC class II complexes is controlled by TLRs in a strictly phagosome-autonomous manner.  相似文献   

17.
Antigen presenting function of class II MHC expressing pancreatic beta cells   总被引:17,自引:0,他引:17  
Class II major histocompatibility complex (MHC) gene expression in the mouse is generally limited to thymic epithelium and bone marrow-derived cells such as B lymphocytes and cells of the macrophage/dendritic cell lineage (M phi/DC). Class II-bearing B lymphocytes and M phi/DC possess antigen presenting cell (APC) function; that is, they can stimulate T lymphocytes reactive to either antigen plus MHC or foreign MHC alone. To assess whether non-bone-marrow-derived cells can acquire APC function and elicit graft rejection through expression of class II, we studied transgenic pancreatic islet beta cells that express a foreign class II (I-E) molecule. In vivo, grafts of I-E+ transgenic islets into I-E- naive hosts are not rejected unless the host is primed by an injection of I-E+ spleen cells. In vitro, the I-E+ beta cells are unable to stimulate T lymphocytes reactive to I-E plus a peptide antigen. Paradoxically, they induce antigen specific unresponsiveness in the T cells. We propose that expression of class II on non-lymphoid cells may serve as an extrathymic mechanism for maintaining self tolerance.  相似文献   

18.
Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.  相似文献   

19.
Developmental regulation of T-cell receptor gene expression   总被引:13,自引:0,他引:13  
D H Raulet  R D Garman  H Saito  S Tonegawa 《Nature》1985,314(6006):103-107
In contrast to B cells or their antibody products, T lymphocytes have a dual specificity, for both the eliciting foreign antigen and for polymorphic determinants on cell surface glycoproteins encoded in the major histocompatibility complex (MHC restriction). The recent identification of T-cell receptor glycoproteins as well as the genes encoding T-cell receptor subunits will help to elucidate whether MHC proteins and foreign antigens are recognized by two T-cell receptors or by a single receptor. An important feature of MHC restriction is that it appears to be largely acquired by a differentiating T-cell population under the influence of MHC antigens expressed in the thymus, suggesting that precursor T cells are selected on the basis of their reactivity with MHC determinants expressed in the host thymus. To understand this process of 'thymus education', knowledge of the developmental regulation of T-cell receptor gene expression is necessary. Here we report that whereas messenger RNAs encoding the beta-and gamma-subunits are relatively abundant in immature thymocytes, alpha mRNA levels are very low. Interestingly, whereas alpha mRNA levels increase during further development and beta mRNA levels stay roughly constant, gamma mRNA falls to very low levels in mature T cells, suggesting a role for the gamma gene in T-cell differentiation.  相似文献   

20.
Therapeutic potential of monovalent monoclonal antibodies   总被引:4,自引:0,他引:4  
S P Cobbold  H Waldmann 《Nature》1984,308(5958):460-462
One therapeutic use for monoclonal antibody technology is the elimination of categories of unwanted cells by virtue of their distinct cell surface antigens. The efficiency of cell destruction by complement lysis or opsonization depends on a number of factors such as antibody specificity and isotype as well as certain properties of the target antigen. In some instances cells can escape destruction by redistributing and eventually losing the antigen-antibody complexes from their surface. This process, known as antigenic modulation, generally depends on bivalent antibody binding. Starting from the observation that rabbit antisera can be made more effective at killing tumour cells if they are first rendered univalent by limited proteolysis, we have now prepared a number of monovalent rat monoclonal antibodies to human cell-surface antigens. We find that these antibodies are no longer able to bring about modulation of their target antigens and have an enhanced facility for lysis with human complement. These special properties should greatly increase the therapeutic potential of monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号