首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Touboul M  Kleine T  Bourdon B  Palme H  Wieler R 《Nature》2007,450(7173):1206-1209
The Moon is thought to have formed from debris ejected by a giant impact with the early 'proto'-Earth and, as a result of the high energies involved, the Moon would have melted to form a magma ocean. The timescales for formation and solidification of the Moon can be quantified by using 182Hf-182W and 146Sm-142Nd chronometry, but these methods have yielded contradicting results. In earlier studies, 182W anomalies in lunar rocks were attributed to decay of 182Hf within the lunar mantle and were used to infer that the Moon solidified within the first approximately 60 million years of the Solar System. However, the dominant 182W component in most lunar rocks reflects cosmogenic production mainly by neutron capture of 181Ta during cosmic-ray exposure of the lunar surface, compromising a reliable interpretation in terms of 182Hf-182W chronometry. Here we present tungsten isotope data for lunar metals that do not contain any measurable Ta-derived 182W. All metals have identical 182W/184W ratios, indicating that the lunar magma ocean did not crystallize within the first approximately 60 Myr of the Solar System, which is no longer inconsistent with Sm-Nd chronometry. Our new data reveal that the lunar and terrestrial mantles have identical 182W/184W. This, in conjunction with 147Sm-143Nd ages for the oldest lunar rocks, constrains the age of the Moon and Earth to Myr after formation of the Solar System. The identical 182W/184W ratios of the lunar and terrestrial mantles require either that the Moon is derived mainly from terrestrial material or that tungsten isotopes in the Moon and Earth's mantle equilibrated in the aftermath of the giant impact, as has been proposed to account for identical oxygen isotope compositions of the Earth and Moon.  相似文献   

2.
Glass is ubiquitous in lunar regolith,and volcanism and hyper-velocity impacts are the major mechanisms of forming lunar glasses.Volcanic glasses on the Moon oc...  相似文献   

3.
MariusHills火山高原位于月球正面风暴洋区域,具有丰富的火山建造遗迹,包括火山穹窿,火山锥和月溪等.该区域保留了月海火山作用的典型特征,为研究月海热演化历史提供了有利的窗口.受以往观测数据类型的限制,大多数研究都是针对该区域的表面形貌和物质成分特性的分析,缺乏对月海火山次表层和内部结构等重要火山特征的研究.本文利用月球正面高分辨率地形和重力数据,结合附加表面和内部载荷的弹性薄壳均衡模型,对该火山区域的平均月壳密度,岩石圈弹性厚度和表面内部载荷比等参数进行定量约束.结果显示该区域月壳密度较高,为3040kg m^-3,具有典型的月海玄武质的密度特征;地下可能存在侵位较浅的岩浆房或岩床状侵入体或是岩浆充填了壳层松散的区域:该区域的岩石圈弹性厚度较小,约为4km,反映该区域在形成过程中富集了大量的热,该结果与通过光谱矿物分析得到的风暴洋区域富集产热元素(如钍)的结果一致.  相似文献   

4.
Images returned by the spacecraft Clementine have been used to produce a quantitative illumination map of the north pole of the Moon, revealing the percentage of time that points on the surface are illuminated during the lunar day. We have used this map to identify areas that are constantly illuminated during a lunar day in summer and which may therefore be in permanent sunlight. All are located on the northern rim of Peary crater, close to the north pole. Permanently sunlit areas represent prime locations for lunar outpost sites as they have abundant solar energy, are relatively benign thermally (when compared with equatorial regions), and are close to permanently shadowed regions that may contain water ice.  相似文献   

5.
Seismic tomography of the Moon   总被引:1,自引:0,他引:1  
We attempted to determine the first three-dimensional P and S wave velocity and Poisson's ratio structures of the lunar crust and mantle down to 1000 km depth under the near-side of the Moon by applying seismic tomography to the moonquake arrival-time data recorded by the Apollo seismic network operated during 1969 to 1977. Our results show that significant lateral heterogeneities may exist in the lunar interior. Because there is no plate tectonics in the Moon, the lateral heterogeneities may be produced at the early stage of the Moon formation and evolution, and they have been preserved till today. There seems to be a correlation between the distribution of deep moonquakes and lateral velocity variations in the lunar lower mantle, suggesting that the occurrence of deep moonquakes may be affected by the lunar structural heterogeneity in addition to the tidal stresses. Although this is an experimental work and the result is still preliminary, it indicates that tomographic imaging of the lunar interior is feasible.  相似文献   

6.
Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile element, some Pb may also have been lost after accretion. The unique (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios of the Earth's mantle suggest that some lead was lost about 50 to 130 Myr after Solar System formation. This has commonly been explained by lead lost via the segregation of a sulphide melt to the Earth's core, which assumes that lead has an affinity towards sulphide. Some models, however, have reconciled the Earth's lead deficit with volatilization. Whichever model is preferred, the broad coincidence of U-Pb model ages with the age of the Moon suggests that lead loss may be related to the Moon-forming impact. Here we report partitioning experiments in metal-sulphide-silicate systems. We show that lead is neither siderophile nor chalcophile enough to explain the high U/Pb ratio of the Earth's mantle as being a result of lead pumping to the core. The Earth may have accreted from initially volatile-depleted material, some lead may have been lost to degassing following the Moon-forming giant impact, or a hidden reservoir exists in the deep mantle with lead isotope compositions complementary to upper-mantle values; it is unlikely though that the missing lead resides in the core.  相似文献   

7.
Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009   总被引:1,自引:0,他引:1  
Terada K  Anand M  Sokol AK  Bischoff A  Sano Y 《Nature》2007,450(7171):849-852
The origin and evolution of the Moon remain controversial, with one of the most important questions for lunar evolution being the timing and duration of basaltic (mare) magmatism. Here we report the result of ion microprobe U-Pb dating of phosphates in a lunar meteorite, Kalahari 009, which is classified as a very-low-Ti mare-basalt breccia. In situ analyses of five phosphate grains, associated with basaltic clasts, give an age of 4.35 +/- 0.15 billion years. These ancient phosphate ages are thought to represent the crystallization ages of parental basalt magma, making Kalahari 009 one of the oldest known mare basalts. We suggest that mare basalt volcanism on the Moon started as early as 4.35 Gyr ago, relatively soon after its formation and differentiation, and preceding the bulk of lunar volcanism which ensued after the late heavy bombardment around 3.8-3.9 Gyr (refs 7 and 8). Considering the extremely low abundances of incompatible elements such as thorium and the rare earth elements in Kalahari 009 (ref. 9) and recent remote-sensing observations illustrating that the cryptomaria tend to be of very-low-Ti basalt type, we conclude that Kalahari 009 is our first sample of a very-low-Ti cryptomare from the Moon.  相似文献   

8.
Jutzi M  Asphaug E 《Nature》2011,476(7358):69-72
The most striking geological feature of the Moon is the terrain and elevation dichotomy between the hemispheres: the nearside is low and flat, dominated by volcanic maria, whereas the farside is mountainous and deeply cratered. Associated with this geological dichotomy is a compositional and thermal variation, with the nearside Procellarum KREEP (potassium/rare-earth element/phosphorus) Terrane and environs interpreted as having thin, compositionally evolved crust in comparison with the massive feldspathic highlands. The lunar dichotomy may have been caused by internal effects (for example spatial variations in tidal heating, asymmetric convective processes or asymmetric crystallization of the magma ocean) or external effects (such as the event that formed the South Pole/Aitken basin or asymmetric cratering). Here we consider its origin as a late carapace added by the accretion of a companion moon. Companion moons are a common outcome of simulations of Moon formation from a protolunar disk resulting from a giant impact, and although most coplanar configurations are unstable, a ~1,200-km-diameter moon located at one of the Trojan points could be dynamically stable for tens of millions of years after the giant impact. Most of the Moon's magma ocean would solidify on this timescale, whereas the companion moon would evolve more quickly into a crust and a solid mantle derived from similar disk material, and would presumably have little or no core. Its likely fate would be to collide with the Moon at ~2-3?km?s(-1), well below the speed of sound in silicates. According to our simulations, a large moon/Moon size ratio (~0.3) and a subsonic impact velocity lead to an accretionary pile rather than a crater, contributing a hemispheric layer of extent and thickness consistent with the dimensions of the farside highlands and in agreement with the degree-two crustal thickness profile. The collision furthermore displaces the KREEP-rich layer to the opposite hemisphere, explaining the observed concentration.  相似文献   

9.
Although the Moon currently has no internally generated magnetic field, palaeomagnetic data, combined with radiometric ages of Apollo samples, provide evidence for such a magnetic field from approximately 3.9 to 3.6 billion years (Gyr) ago, possibly owing to an ancient lunar dynamo. But the presence of a lunar dynamo during this time period is difficult to explain, because thermal evolution models for the Moon yield insufficient core heat flux to power a dynamo after approximately 4.2 Gyr ago. Here we show that a transient increase in core heat flux after an overturn of an initially stratified lunar mantle might explain the existence and timing of an early lunar dynamo. Using a three-dimensional spherical convection model, we show that a dense layer, enriched in radioactive elements (a 'thermal blanket'), at the base of the lunar mantle can initially prevent core cooling, thereby inhibiting core convection and magnetic field generation. Subsequent radioactive heating progressively increases the buoyancy of the thermal blanket, ultimately causing it to rise back into the mantle. The removal of the thermal blanket, proposed to explain the eruption of thorium- and titanium-rich lunar mare basalts, plausibly results in a core heat flux sufficient to power a short-lived lunar dynamo.  相似文献   

10.
随着1994年的“克莱门汀”号和1998年的“月球勘探者”号月球探测器的发射成功和取得的新的科学发现,在21世纪初,世界各国相继宣布以月球和火星探测为中心的深空探测计划,掀起自阿波罗计划之后的第二次月球探测高潮。中国在卫星应用和载人航天取得突破性进展之后,适时开展月球探测,填补了中国在深空探测领域的空白。绕月探测工程的实施经历了长达10年的政治、经济、科技等方面的综合论证,于2004年初开始正式启动。2007年初,第一颗月球探测卫星——嫦娥1号的各项设施已经全部准备就绪,待命出厂,择机发射,以确保首发必成。嫦娥1号绕月探测卫星的科学目标包括绘制月球立体地图、探测月表物质成分、探测月壤厚度和探测地月空间环境等4项科学任务。  相似文献   

11.
Schultz PH  Staid MI  Pieters CM 《Nature》2006,444(7116):184-186
Samples of material returned from the Moon have established that widespread lunar volcanism ceased about 3.2 Gyr ago. Crater statistics and degradation models indicate that last-gasp eruptions of thin basalt flows continued until less than 1.0 Gyr ago, but the Moon is now considered to be unaffected by internal processes today, other than weak tidally driven moonquakes and young fault systems. It is therefore widely assumed that only impact craters have reshaped the lunar landscape over the past billion years. Here we report that patches of the lunar regolith in the Ina structure were recently removed. The preservation state of relief, the number of superimposed small craters, and the 'freshness' (spectral maturity) of the regolith together indicate that features within this structure must be as young as 10 Myr, and perhaps are still forming today. We propose that these features result from recent, episodic out-gassing from deep within the Moon. Such out-gassing probably contributed to the radiogenic gases detected during past lunar missions. Future monitoring (including Earth-based observations) should reveal the composition of the gas, yielding important clues to volatiles archived at great depth over the past 4-4.5 Gyr.  相似文献   

12.
月球的力学形状以及月球物理参数的研究   总被引:1,自引:1,他引:1  
利用月球重力场展开式中的Stokes系数,确定了月球的力学形状(月球水准而方程),然后计算了最佳拟合的月球椭球体的参数,周时,通过数值求解Clairaut方程获得了一组月球物理参数的流体静力学平衡值,进而讨论了月球形状参数中的非流体静力学分量的特点.显而易见,当选取月球的一些物理参数时,应考虑到地月系经历了潮汐演化这一事实,最后,建议把月球的物理参数分成三类初始常数,导出常数,以及估算常数(参看表4),本文给出了计算各导出常数的公式,并建议把月球的潮汐洛夫数k_2归于估算常数中,当前可用月球内部结构模型(例如本文的LUNA 91-04)的计算值(k_2=0.0266)作为其采用值,该值与IERS Standards(1992)中给出的数值(0.0222)不同;当k_2值改变吋,将会影响到导出常数C_(22)和C/MR~2的取值.  相似文献   

13.
Borg LE  Connelly JN  Boyet M  Carlson RW 《Nature》2011,477(7362):70-72
Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360?±?3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.  相似文献   

14.
Borg LE  Shearer CK  Asmerom Y  Papike JJ 《Nature》2004,432(7014):209-211
Primordial solidification of the Moon (or its uppermost layer) resulted in the formation of a variety of rock types that subsequently melted and mixed to produce the compositional diversity observed in the lunar sample suite. The initial rocks to crystallize from this Moon-wide molten layer (the magma ocean) contained olivine and pyroxene and were compositionally less evolved than the plagioclase-rich rocks that followed. The last stage of crystallization, representing the last few per cent of the magma ocean, produced materials that are strongly enriched in incompatible elements including potassium (K), the rare earth elements (REE) and phosphorus (P)--termed KREEP. The decay of radioactive elements in KREEP, such as uranium and thorium, is generally thought to provide the thermal energy necessary for more recent lunar magmatism. The ages of KREEP-rich samples are, however, confined to the earliest periods of lunar magmatism between 3.8 and 4.6 billion years (Gyr) ago, providing no physical evidence that KREEP is directly involved in more recent lunar magmatism. But here we present evidence that KREEP magmatism extended for an additional 1 Gyr, based on analyses of the youngest dated lunar sample.  相似文献   

15.
Ward WR  Canup RM 《Nature》2000,403(6771):741-743
The Moon is generally believed to have formed from the debris disk created by a large body colliding with the early Earth. Recent models of this process predict that the orbit of the newly formed Moon should be in, or very near, the Earth's equatorial plane. This prediction, however, is at odds with the known history of the lunar orbit: the orbit is currently expanding, but can be traced back in time to reveal that, when the Moon formed, its orbital inclination relative to the Earth's equator was I approximately = 10 degrees. The cause of this initial inclination has been a mystery for over 30 years, as most dynamical processes (such as those that act to flatten Saturn's rings) will tend to decrease orbital inclinations. Here we show that the Moon's substantial orbital inclination is probably a natural result of its formation from an impact-generated disk. The mechanism involves a gravitational resonance between the Moon and accretion-disk material, which can increase orbital inclinations up to approximately 15 degrees.  相似文献   

16.
得到了人造月球卫星在月球、地球和太阳引力作用下的运动:1)除轨道根数a,e,i外都有长期项;2)所有根数都有短周期变化,但是变化周期很短,振幅很小;3)除轨道半长径a以外都有长周期项。长周期项可以分为3部分:第一部分是由于月球扁率摄动造成的;第二部分是由于地球引力造成的;第三部分是二者联合摄动造成的。其中以第二种影响最大;它的周期约半个恒星月,振幅约3km和3ms~(-1)。还讨论了人造月球卫星以及相应的同步卫星的运动稳定性。  相似文献   

17.
Ozima M  Seki K  Terada N  Miura YN  Podosek FA  Shinagawa H 《Nature》2005,436(7051):655-659
The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth's atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.  相似文献   

18.
Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing point are determined by positioning analysis. It is shown that the landing epoch (the emission epoch of the last signal) of CE-1 satellite on the Moon was at UTC8h13m6.51s. The lunar longitude, latitude and surface height of the landing point in the lunar primary axes frame are respectively 52.27...  相似文献   

19.
辽西建平县义县组火山岩形成构造环境的地球化学鉴别   总被引:1,自引:0,他引:1  
对辽西建平县平庄-马厂盆地的火山岩进行了岩石学、地球化学、同位素年代学研究.结果表明,火山岩属白垩纪.义县组火山作用可分为2个亚旋回.火山岩主要为流纹岩类、粗面岩类和粗安岩类.义县旋回火山岩属高钾钙碱性岩石系列.火山岩具有高SiO2,Al2O3,K2O,Na2O和低MgO,TiO2的特征.火山岩富集大离子亲石元素(LILE)K,Rb,Sr,Zr,Ba,Pb,Li等,高场强元素(HFSE)Nb,Ti,P及相容元素Co,Ni,Cr,V亏损.火山岩为轻稀土富集型,总体显示弱负铕异常、无铈异常.对火山岩形成的构造环境的地球化学判别,表明义县组火山岩成岩物质主要来源于下地壳的部分熔融,岩浆在上升过程中受到了一定程度的上地壳物质的混染.火山岩形成于板内岩石圈不均匀伸展作用环境,具有大陆板内造山带火山岩的基本特征.  相似文献   

20.
Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean   总被引:1,自引:0,他引:1  
Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号