首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Morphogenetic fields must be generated by mechanisms based on known physical forces which include gravitational forces, mechanical forces, electrical forces, or some combination of these. While it is unrealistic to expect a single force, such as a voltage gradient, to be the sole cause of a morphogenetic event, spatial and temporal information about the electrical fields and ion concentration gradients in and around a cell or embryo undergoing morphogenesis can take us one step further toward understanding the entire morphogenetic mechanism. This is especially true because one of the handful of identified morphogens is Ca2+, an ion that will not only generate a current as it moves, but which is known to directly influence the plasma membrane's permeability to other ions, leading to other transcellular currents. It would be expected that movements of this morphogen across the plasma membrane might generate ionic currents and gradients of both electrical potential and intracellular concentration. Such ionic currents have been found to be integral components of the morphogenetic mechanism in some cases and only secondary components in other cases. My goal in this review is to discuss examples of both of these levels of involvement that have resulted from investigations conducted during the past several years, and to point to areas that are ripe for future investigation. This will include the history and theory of ionic current measurements, and a discussion of examples in both plant and animal systems in which ionic currents and intracellular concentration gradients are integral components of morphogenesis as well as cases in which they play only a secondary role. By far the strongest cases for a direct role of ionic currents in morphogenesis is the polarizing fucoid egg where the current is carried in part by Ca2+ and generates an intracellular concentration gradient of this ion that orients the outgrowth, and the insect follicle in which an intracellular voltage gradient is responsible for the polarized transport from nurse cell to oocyte. However, in most of the systems studied, the experiments to determine if the observed ionic currents are directly involved in the morphogenetic mechanism are yet to be done. Our experience with the fucoid egg and the fungal hypha ofAchlya suggest that it is the change in the intracellular ion concentration resulting from the ionic current that is critical for morphogenesis.  相似文献   

2.
M Vassalle 《Experientia》1987,43(11-12):1135-1140
The inward movement of sodium ions and the outward movement of potassium ions are passive and the reverse movements against the electrochemical gradients require the activity of a metabolism-driven Na+/K+-pump. The activity of the Na+/K+-pump influences the membrane potential directly and indirectly. Thus, the maintenance of a normal electrical function requires that the Na+/K+-pump maintain normal ionic concentrations within the cell. The activity of the Na+/K+-pump also influences the membrane potential directly by generating an outward sodium current that is larger when the Na+/K+-pump activity is greater. The activity of the Na+/K+-pump is regulated by several factors including the intracellular sodium concentration and the neuromediators norepinephrine and acetylcholine. The inhibition of the Na+/K+-pump can lead indirectly to the development of inward currents that may cause repetitive activity. Therefore, the Na+/K+-pump modifies the membrane potential in different ways both under normal and abnormal conditions and influences in an essential way many cardiac functions, including automaticity, conduction and contraction. Key words. Active transport of ions; cardiac tissues; electroneutral and electrogenic Na+/K/-pump; control of Na+/K+-pump; normal and abnormal electrical events.  相似文献   

3.
Sodium channels in cardiac Purkinje cells   总被引:2,自引:0,他引:2  
Sodium (Na+) currents are responsible for excitation and conduction in most cardiac cells, but their study has been hampered by the lack of a satisfactory method for voltage clamp. We report a new method for low resistance access to single freshly isolated canine cardiac Purkinje cells that permits good control of voltage and intracellular ionic solutions. The series resistance was usually less than 3 omega cm2, similar to that of the squid giant axon. Cardiac Na+ currents resemble those of nerve. However, Na+ current decay is multiexponential. The basis for this was further studied with cell-attached patch clamp recording of single Na+ channel properties. A prominent characteristic of the single channels was their ability to reopen after closure. There was also a long opening state that may be the basis for a small very slowly decaying Na+ current. This rare long opening state may contribute to the Na+ current during the action potential plateau.  相似文献   

4.
Gastrulation is a crucial step in early embryogenesis. During gastrulation, a set of morphogenetic processes takes place leading to the establishment of the basic body plan and formation of primary germ layers. A rich body of knowledge about these morphogenetic processes has been accumulated over decades. The understanding of the molecular mechanism that controls the complex cell movement and inductive processes during gastrulation remains a challenge. Substantial progress has been made recently to identify and characterize pathways and molecules implicated in the modulation of morphogenesis during vertebrate gastrulation. Here, we summarize recent findings in the analysis of signaling pathways implicated in gastrulation movements, with the aim to generalize the basic molecular principles of vertebrate morphogenesis.  相似文献   

5.
The isolation of ionic fluxes contributing to electric currents through cell membranes often requires block of other undesired components which can be achieved, among others, by divalent cations. Mn2+ and Ba2+ are often used, for example, to block Ca and K currents. Here we have investigated the effects of these two cations on the properties of the hyperpolarization-activated pacemaker current if, in rabbit sino-atrial node myocytes, as obtained by voltage clamp analysis. We find that 2 mM Mn2+ shifts the if activation curve by 3.2 +/- 0.3 mV towards more positive values. However, when 1 mM Ba2+ is also added, the positive shift is more than halved (1.3 +/- 0.2 mV). We find, too, that in the absence of blocking cations the ACh-induced if inhibition is slightly higher than in their presence. These results indicate that the alteration of if kinetic properties by Ba2+ plus Mn(2+)-containing solutions is minimal.  相似文献   

6.
Mechanical forces are increasingly recognized as central factors in the regulation of tissue morphogenesis and homeostasis. Central to the transduction of mechanical information into biochemical signaling is the contractile actomyosin cytoskeleton. Fluctuations in actomyosin contraction are sensed by tension sensitive systems at the interface between actomyosin and cell adhesion complexes. We review the current knowledge about the mechanical coupling of cell–cell junctions to the cytoskeleton and highlight the central role of α-catenin in this linkage. We assemble current knowledge about α-catenin’s regulation by tension and about its interactions with a diversity of proteins. We present a model in which α-catenin is a force-regulated platform for a machinery of proteins that orchestrates local cortical remodeling in response to force. Finally, we highlight recently described fundamental processes in tissue morphogenesis and argue where and how this α-catenin-dependent cadherin mechanotransduction may be involved.  相似文献   

7.
Activated receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain like (MLKL) are essential components of the necroptotic pathway. Phosphorylated MLKL (pMLKL) is thought to induce membrane leakage, leading to cell swelling and disintegration of the cell membrane. However, the molecular identity of the necroptotic membrane pore remains unclear, and the role of pMLKL for membrane permeabilization is currently disputed. We observed earlier that the phospholipid scramblase and ion channel TMEM16F/anoctamin 6 cause large membrane currents, cell swelling, and cell death when activated by a strong increase in intracellular Ca2+. We, therefore, asked whether TMEM16F is also central to necroptotic cell death and other cellular events during necroptosis. Necroptosis was induced by TNFα, smac mimetic, and Z-VAD (TSZ) in NIH3T3 fibroblasts and the four additional cell lines HT29, 16HBE, H441, and L929. Time-dependent changes in intracellular Ca2+, cell morphology, and membrane currents were recorded. TSZ induced a small and only transient oscillatory rise in intracellular Ca2+, which was paralleled by the activation of outwardly rectifying Cl? currents, which were typical for TMEM16F/ANO6. Ca2+ oscillations were due to Ca2+ release from endoplasmic reticulum, and were independent of extracellular Ca2+. The initial TSZ-induced cell swelling was followed by cell shrinkage. Using typical channel blockers and siRNA-knockdown, the Cl? currents were shown to be due to the activation of ANO6. However, the knockdown of ANO6 or inhibitors of ANO6 did not inhibit necroptotic cell death. The present data demonstrate the activation of ANO6 during necroptosis, which, however, is not essential for cell death.  相似文献   

8.
S J Swithenby 《Experientia》1988,44(8):673-678
The ionic currents flowing in developing organisms produce weak magnetic fields that can be detected using SQUID magnetometers. The method is non-invasive and dc recording is possible. To date SQUID magnetometers have mainly been used in human studies. The features of the technique are described and the prospects of extending its use to developmental studies are discussed. Feasible instrumental specifications are indicated. A recent SQUID magnetometer investigation of ionic current flow in the developing chick in ovo is summarised as an illustration of the magnetometer method. The paper as a whole argues that magnetometry is a useful alternative or adjunct to electrode-based experiments on the electrophysiology of developing organisms.  相似文献   

9.
Summary The ionic currents flowing in developing organisms produce weak magnetic fields that can be detected using SQUID magnetometers. The method is non-invasive and dc recording is possible. To date SQUID magnetometers have mainly been used in human studies. The features of the technique are described and the prospects of extending its use to developmental studies are discussed. Feasible instrumental specifications are indicated. A recent SQUID magnetometer investigation of ionic current flow in the developing chick in ovo is summarised as an illustration of the magnetometer method. The paper as a whole argues that magnetometry is a useful alternative or adjunct to electrode-based experiments on the electrophysiology of developing organisms.  相似文献   

10.
Dispersal of the constituent cells of mammalian visceral and vascular smooth muscles has permitted recordings both of membrane currents under whole-cell voltage clamp, and of currents through single ionic channels using the patch-clamp technique. A rectangular depolarizing step applied to a single cell under voltage clamp yielded a net inward current followed by a net outward current in normal physiological solution. In isolated, 'inside-out' patches of cell membrane a calcium- and potential-sensitive K channel (100 pS conductance) and a calcium-insensitive, potential-sensitive K+ channel (50 pS conductance) with slow kinetics have so far been identified and characterized.  相似文献   

11.
Since being discovered and intensively studied for over a decade, Smad ubiquitylation regulatory factor-1 (Smurf1) has been linked with several important biological pathways, including the bone morphogenetic protein pathway, the non-canonical Wnt pathway, and the mitogen-activated protein kinase pathway. Multiple functions of this ubiquitin ligase have been discovered in cell growth and morphogenesis, cell migration, cell polarity, and autophagy. Smurf1 is related to physiological manifestations in terms of age-dependent deficiency in bone formation and invasion of tumor cells. Smurf1-knockout mice have a significant phenotype in the skeletal system and considerable manifestations during embryonic development and neural outgrowth. In depth studying of Smurf1 will help us to understand the etiopathological mechanisms of related disorders. Here, we will summarize historical and recent studies on Smurf1, and discuss the E3 ligase-dependent and -independent functions of Smurf1. Moreover, intracellular regulations of Smurf1 and related physiological phenotypes will be described in this review.  相似文献   

12.
Treatment during starvation of D. discoideum amoebae with micromolar amounts of A23187 causes an enhanced aggregation. Cells develop the properties of differentiated, aggregation competent amoebae earlier than untreated populations. Ionophore increases the release of calcium, and prevents the excretion of the phosphodiesterase ihibitor normally released in the media. A23187 suppresses the morphogenetic block of some aggregates mutants, suggesting that the ionophore either activates cAMP synthesis and excretion, or increases the cellular sensitivity to extracellular cAMP signals. This might result from the enhanced mobilisation of intracellular calcium  相似文献   

13.
Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages.  相似文献   

14.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

15.
The functional and structural basis of reverse operation of PepT1 has been studied in Xenopus oocytes expressing the wild-type and mutated forms of this protein. Using brief pulses from a negative holding potential, wild-type and Arg282 mutants exhibit outward currents in the presence of Gly-Gln. The reversal potential of these currents is affected by both pH and substrate concentration, confirming coupled transport in the wild type and in the mutants as well. Long-lasting voltage and current-clamp experiments show that the outward currents are only temporary, and reflect accumulation and/or depletion effects near the membrane. The ability to operate in reverse mode was confirmed in all isoforms by intracellular injection of substrate. The role of Arg282 and Asp341 in the reverse transport was also investigated using charged substrates. Positive Lys-Gly (but not Gly-Lys) showed enhanced transport currents in the Arg282 mutants. In contrast, negative Gly-Asp and Asp-Gly elicited modest currents in all isoforms.  相似文献   

16.
Summary Under voltage-clamp conditions fast Ca2+-inward and early K+-outward currents were recorded from the smooth-muscle cells of the gastric fundus. It is assumed that the less electrical excitability of these cells is due to the early activation of the outward current.  相似文献   

17.
Summary The isolation of ionic fluxes contributing to electric currents through cell membranes often requires block of other undesired components which can be achieved, among others, by divalent cations. Mn2+ and Ba2+ are often used, for example, to block Ca and K currents. Here we have investigated the effects of these two cations on the properties of the hyperpolarization-activated pacemaker current if, in rabbit sino-atrial node myocytes, as obtained by voltage clamp analysis. We find that 2 mM Mn2+ shifts the if activation curve by 3.2±0.3 mV towards more positive values. However, when 1 mM Ba2+ is also added, the positive shift is more than halved (1.3±0.2 mV). We find, too, that in the absence of blocking cations the ACh-induced if inhibition is slightly higher than in their presence. These results indicate that the alteration of if kinetic properties by Ba2+ plus Mn2+-containing solutions is minimal.  相似文献   

18.
Tetraspanins regulate a variety of cellular functions. However, the general cellular mechanisms by which tetraspanins regulate these functions remain poorly understood. In this article we collected the observations that tetraspanins regulate the formation and/or development of various tubular structures of cell membrane. Because tetraspanins and their associated proteins (1) are localized at the tubular structures, such as the microvilli, adhesion zipper, foot processes, and penetration peg, and/or (2) regulate the morphogenesis of these membrane tubular structures, tetraspanins probably modulate various cellular functions through these membrane tubular structures. Some tetraspanins inhibit membrane tubule formation and/or extension, while others promote them. We predict that tetraspanins regulate the formation and/or development of various membrane tubular structures: (1) microvilli or nanovilli at the plasma membranes free of cell and matrix contacts, (2) membrane tubules at the plasma membrane of cell-matrix and cell-cell interfaces, and (3) membrane tubules at the intracellular membrane compartments. These different membrane tubular structures likely share a common morphogenetic mechanism that involves tetraspanins. Tetraspanins probably regulate the morphogenesis of membrane tubular structures by altering (1) the biophysical properties of the cell membrane such as curvature and/or (2) the membrane connections of cytoskeleton. Since membrane tubular structures are associated with cell functions such as adhesion, migration, and intercellular communication, in all of which tetraspanins are involved, the differential effects of tetraspanins on membrane tubular structures likely lead to the functional difference of tetraspanins.  相似文献   

19.
C S Tsao 《Experientia》1984,40(2):168-170
The combination of calcium and ascorbic acid in water at 25 degrees C has been examined by measuring the change of free calcium ion concentration as ascorbate was added in small increment to a solution of calcium. The data show clearly that complex formation between calcium ion and ascorbate ion occurred. At ionic strength mu = 0.1-0.2, the equilibrium constant of Ca++ and the singly-charged ascorbate ion has been measured to be 2.1 M-1. The precision of the result is better than 5% and the accuracy is estimated to be better than 20%. The application of the equilibrium constants is discussed.  相似文献   

20.
Decoding the Hedgehog signal in animal development   总被引:4,自引:0,他引:4  
The Hedgehog (Hh) family of secreted proteins plays essential roles in a myriad of developmental processes via a complex signaling cascade conserved in species ranging from insects to mammals. In many developmental contexts, Hh acts as long-range morphogen to control distinct cellular outcomes as a function of its concentration. Here we review the current understanding of the Hh signaling mechanisms that govern the establishment of the Hh gradient and the transduction of the Hh signal with an emphasis on the intracellular signaling cascade from the receptor to the nuclear effector. We discuss how graded Hh signals are transduced to govern distinct developmental outcomes. Received 28 October 2005; received after revision 6 February 2006; accepted 15 February 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号