首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以LiNi0.8Co0.1Mn0.1O2(NCM811)为正极、中间相碳微球(MCMB)为负极构建锂离子全电池,研究了充放电电压区间对NCM811/MCMB全电池电化学性能的影响。研究结果表明:以4.3 V为充电截止电压,降低放电截止电压可提高全电池的容量,但高放电截止电压下全电池的循环性能更加稳定;在2.8~4.3 V电压区间下,NCM811/MCMB全电池不但具有高的比容量,同时还具有良好的循环性能和充放电可逆性。  相似文献   

2.
在锂离子电池充放电过程中,电解液与电极材料发生反应,形成的固态电解质膜(solid electrolyte interphase,SEI)随着充放电次数的增加而变厚,这将降低电池的循环稳定性。所制备的人工固态电解质膜(a-SEI)可改善锂离子电池的循环稳定性,其主要成分为使用液相法制备的氟化锂(LiF)、氮化亚铜(Cu 3N)纳米颗粒。通过两种不同路径,将两种纳米颗粒先后在锂离子电池正极三元材料LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)电极片表面和活性材料颗粒表面涂覆生成一层a-SEI。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学阻抗谱(EIS)等材料表征和电化学分析方法,解析a-SEI对锂离子电池循环稳定性的影响。结果表明,NCM811材料表面包覆Cu 3N作为a-SEI的电化学性能最好,相比纯NCM811材料,50周循环后的容量保持率可提升26.5%。  相似文献   

3.
三元正极材料因比容量高、成本低和较为环保而备受研究者的关注和青睐,但其循环稳定性与倍率性能较差。通过固相包覆法制备了纳米Al2O3以及LiAlO2包覆的LiNi1/3Co1/3Mn1/3O2材料,对所制备材料的结构及形貌进行系统表征,结果表明,两种包覆均在保持正极材料结构的基础上成功形成了表面包覆层。电化学性能测试表明,用质量分数为1%的Al2O3包覆时,其初始放电容量从原始材料的159 mA·h·g-1提升至162.57 mA·h·g-1,循环35次的容量保持率由74.38%提升至94.89%;用质量分数为3%的LiAlO2包覆时,初始放电比容量提升至164.85 mA·h·g-1,前35次的容量保持率较未包覆材料均有所提高。此外,经包覆后正极材料循环性能和倍率性能均有所提高,电压衰减和电化学阻抗降低,...  相似文献   

4.
钠离子电容器(SICs)具有比超级电容器更高的能量密度和比钠离子电池更高的功率密度.然而,SICs中正极与负极动力学不平衡问题将导致倍率性能与功率密度较差.因此,需要开发SICs负极材料提升SICs的电化学性能.基于合金化/脱合金反应的高容量以及非活性缓冲基质所带来的优异循环稳定性,锡基三元氧化物在储能系统中获得了广泛关注.本文采用N/P双掺杂石墨烯对焦磷酸锡(SnP2O7)纳米颗粒进行包覆(SnP2O7@NP-G),成功制备了SICs负极材料.受益于锡基三元氧化物的独特结构和N/P双掺杂石墨烯的协同效应,所得SnP2O7@NP-G拥有优异的功率密度(6 775 W/kg)与能量密度(102.1 W·h/kg).同时,SnP2O7@NP-G拥有优异的循环稳定性,在2 A/g的大电流密度下,经过1 000次循环后,可逆容量为87.9 mA·h/g.本工作将促进高性能SICs锡基负极材料的发展.  相似文献   

5.
为获得高电压下高容量的LiCoO2正极材料,采用Li2O-AlO-SiO2锂快离子导体对LiCoO2进行了表面包覆研究,结果显示,Li2O-AlO-SiO2能均匀分布在LiCoO2颗粒表面,包覆后材料的循环性能、倍率性能及安全性能均有很大提高;3.0~4.35 V、500周循环后Li2O-AlO-SiO2包覆样品容量保持率为81.2%,未包覆的LiCoO2450周循环后容量保持率为64.6%。Li2O-AlO-SiO2还可以提高材料的导电性,包覆后的材料5 C倍率放电容量保持率高达84.8%,未包覆的材料仅为71.9%。包覆后的LiCoO2正极材料的安全性能也都有明显改善。  相似文献   

6.
氧化亚硅因其高理论比容量和丰富自然资源被认为是下一代高比能量锂离子电池负极材料之一。然而,氧化亚硅在充放电过程中由于较大体积变化引起电极结构不稳定,造成性能的衰减。本研究提出一种碳包覆层–氧化亚硅–石墨烯的三明治结构,有效提高氧化亚硅负极材料在充放电过程的结构稳定性。石墨烯和碳包覆层构建出一个围绕氧化亚硅颗粒的三维电子传输网络,不仅提高材料的电极反应动力学过程,而且能均化材料表面的局部电流和电极反应程度,实现材料体积的均匀变化。此外,存在于氧化亚硅和石墨烯之间的硅–氧–碳键可以增强颗粒在石墨烯片层上的附着强度,防止氧化亚硅在嵌脱锂过程中从石墨烯上脱落。得益于上述结构优势的协同作用,碳/氧化亚硅@石墨烯材料表现出优异的循环稳定性,在0.1 C倍率下循环100圈后比容量为890 mAh/g,容量保持率为73.7%。另外,材料经历前35圈电流密度从0.1 C到5 C的逐步上升的充放电循环后恢复到0.1 C的低电流后,仍表现出886 mAh/g的可逆比容量,对应容量恢复率93.7%,表明材料的倍率性能优异。该研究提供一种提高高容量型锂/钠离子电池负极材料结构稳定性的新策略。  相似文献   

7.
采用液相无焰燃烧法在500℃反应1 h,然后在600℃二次焙烧3、6、9 h和12 h制备了尖晶石型Li1.05Ni0.05Mn1.90O4正极材料.结果表明,不同二次焙烧时间制备的Li-Ni复合共掺材料没有改变LiMn2O4的尖晶石结构,随着焙烧时间的增加,颗粒尺寸增大,结晶性提高.二次焙烧时间为9 h的Li1.05Ni0.05Mn1.90O4样品的颗粒尺寸约为70~100 nm,具有优异的电化学性能,在1 C(1 C=148 mA·h·g-1)倍率,初始放电比容量为94.8 mA·h·g-1,400次循环后展现出72.15%的容量保持率;在5 C下初始放电比容量可达到89.7 mA·h·g-1,800次循环后,仍能维持70.79%的容量保持率.并且具有较小的电荷转移电阻和较低的表观活化能.Li-Ni复...  相似文献   

8.
通过溶胶-凝胶法制备了一种锰基双金属氧化物ZnMnO3纳米颗粒材料,首次将其应用于水系锌离子电池正极材料。在300 mA/g的电流密度下表现出高的放电比容量(175 mA·h/g)。在1 000 mA/g的电流密度下放电比容量仍然高达134 mA·h/g。与单金属氧化物相比,ZnMnO3表现出更优异的循环稳定性和更好的倍率性能。通过非原位的电极表面扫描电子显微镜(SEM)形貌表征,ZnMnO3在循环过程中能够保持结构的稳定性,从而具有稳定的长循环性能。通过非原位X射线衍射(XRD)分析表明,ZnMnO3的储锌行为符合嵌入脱出机理。  相似文献   

9.
钠离子电池具有潜在的高能量密度和明显的成本优势,近些年来受到广泛的研究和商业开发。其中,P2型层状氧化物材料因其制备简单、空气稳定性好而被认为是一种很有前景的正极材料,但实际可用可逆比容量较低。Mg掺杂可以触发阴离子氧O2-/(O2n-的氧化还原反应,进而提供可观的容量。但在阴离子氧化还原过程中会产生不可逆相变,使其循环性能变差,并且充放电过程中存在着严重的电压滞后现象。本文采用Mg和Co共掺的手段来调节晶体结构和电子结构,提高比容量的同时,减少电压滞后,提升循环性能。优选得到了正极材料P2-Na0.67Mg0.22Co0.22Mn0.56O2,在1.5~4.5V的电压区间内,可逆比容量为198mAh·g-1。相比于同体系的其他材料具有较好的循环稳定性和倍率性能,同时电压滞后现象得到明显改善,为设计新型层状氧化物正极材料提供了新思路。  相似文献   

10.
利用双水解反应制备含稳定胶束H2SnO3@Fe(OH)3的胶体溶液,并在静电吸附作用下将其自组装到天然石墨表面,经水热反应构建了表面具有SnO2-FeO(OH)精细结构的石墨负极体系. 结构表征结果显示:水热反应后天然石墨表面存在致密的纳米结构包覆层,该包覆层是由超细SnO2纳米晶颗粒(粒径 < 6 nm)弥散的非晶态FeO(OH)组成. 电化学测试结果表明:在石墨表面构建SnO2-FeO(OH)精细纳米结构不仅能提升其充电/放电容量,而且还可改善其循环稳定性. 在0.1C充放电流密度下,经表面修饰的天然石墨首次充放电效率达到77.5%,循环100次后放电容量仍能维持在384.4 mAh/g,放电容量较商用天然石墨提高了23%.  相似文献   

11.
以竹纤维为模板,Ti(OC4H9)4和Li(Ac).2H2O为原料,用模板法制备锂离子电池微米管状Li4Ti5O12负极材料。采用XRD,SEM,BET,充放电实验和交流阻抗等对合成材料的结构、形貌和电化学性能进行表征。研究结果表明:制备的微米管状Li4Ti5O12负极材料由尖晶石型纳米Li4Ti5O12颗粒构成,具有较大的比表面积,该材料具有良好的电化学性能,在0.5~3.0 V,0.1C倍率下的首次放电比容量为178 mA.h/g,充放电循环100次后放电比容量仍保留162 mA.h/g,且倍率性能优异。  相似文献   

12.
采用高温固相法制备三元单晶正极材料LiNi0.5Mn0.3Co0.2O2(NMC532),并采用碳酸锆铵对其进行表面喷雾包覆,通过XRD、场发射电子扫描显微镜、能量色散光谱仪、电池充放电、电化学阻抗和循环伏安测试研究了碳酸锆铵喷雾包覆对材料结构和电化学性能的影响.电化学性能测试表明,碳酸锆铵喷雾包覆可有效改善材料的高温循环性能,保持首圈库仑效率基本不变,但会牺牲材料的首圈放电比容量.相比于未喷雾包覆的三元单晶NMC532样品,喷雾包覆量为0.3%的NMC532样品,具有最优异的电化学性能,在55℃0.3C下的首次放电比容量为185.2 m Ah/g,库仑效率88.2%;在1.0C下经80次循环后容量保持率为95.5%.  相似文献   

13.
作为钾离子电池正极材料,普鲁士蓝类似物的循环稳定性与倍率性能不够理想,本研究使用熔盐对普鲁士蓝类似物K2NiFe(CN)6(KNF)进行改性. SEM表征表明熔盐法处理后的样品具有更为粗糙的表面,BET结果表明熔盐法改性后KNF的比表面积由3.0 m2/g提升到157.4 m2/g,并展现出了优异的循环稳定性,在60 mA·g-1的电流密度下经过100次循环,其可逆容量为56.3 mA·h·g-1,容量保持率为87.8%. EIS结果进一步证实熔盐法处理后样品阻抗明显减小(从3 954Ω降到2 740Ω)、具有更好的电子传导率.本文使用的熔盐法操作简单,可以在不破坏材料本身的前提下有效提升KNF等普鲁士蓝类似物的电化学性能,是一种有潜力的改性手段.  相似文献   

14.
采用微波诱导液相无焰燃烧法快速制备LiMn1.925Cu0.075O4正极材料.通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)测试手段表明,Cu掺杂未改变尖晶石LiMn2O4的晶体结构;随着焙烧时间的延长,颗粒尺寸逐渐增大,晶界逐步清晰;Cu2+进入LiMn2O4晶格中.电化学测试表明,二次焙烧8 h的LiMn1.925Cu0.075O4正极材料表现出优异的电化学性能.在1 C倍率下,首次放电比容量为110.9mA·h·g-1,循环400次后容量保持率63.9%;在5 C和10 C高倍率下可实现1 000次循环,首次放电比容量分别为108.9、94.8 mA·h·g-1,保持率分别为61.3%、68.1%. Cu掺杂有效抑制Mn的溶解和Jahn-Teller效应,提高材料的结构稳定性与电化学...  相似文献   

15.
采用共沉淀法将质量分数3%的Al取代Mn掺入二元Ni0.90Mn0.10OH2前驱体中,经高温固相烧结合成一种无Co高Ni三元正极LiNi0.90Mn0.07Al0.03O2,并通过X射线衍射(X ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、能量弥散射线谱(energy dispersive spectroscopy,EDS)等表征手段进行分析,探讨了Al3+掺杂对材料结构及性能的影响。结果表明,引入Al3+后,Ni0.90Mn0.07Al0.03OH2一次颗粒明显变细,对应LiNi0.90Mn0.07Al0.03O2结晶度明显提高。在25 ℃、3.0~4.3 V下充放电,掺杂材料的0.1C比容量为191.3 mAh/g,高于未掺杂材料的181.5 mAh/g;0.5C循环90次的容量保持率为92.0%,高于未掺杂材料的89.3%;高温45 ℃下循环容量保持率为90.7%,高于未掺杂材料的92.2%。材料性能的提升可归因于Al3+掺杂使得材料结晶度升高,稳定性提升,Li+传递势垒降低。  相似文献   

16.
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X7-Ray Diffraction)、SEM (Scanning Electron Microscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温 度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2.5~4.4V电位区间内, 首次放电容量为162 mAh·g-1, 并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大, 循环稳定性减弱。在低温(800, 850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900, 950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

17.
为了提高磷酸铁锂的能量密度,本文通过两步高温固相反应法合成了锂离子电池正极LiFePO_4/C复合材料,利用XRD、SEM、TEM等方法对该正极材料的晶体结构、表面形貌进行了分析研究。实验结果表明,LiFePO_4/C具有单一的橄榄石结构,通过掺杂前驱体10%(质量分数)的葡萄糖合成的材料具有良好的充放电性能和循环稳定性能球状,LiFePO4为锂离子的迁移和扩散提供了通道,有利于电化学性能的提升。在0.1 C倍率下进行充放电测试,首次放电比容量可达161 m Ahg-1,在2 C下循环了100次后复合材料的容量为148 m Ahg~(-1),库仑效率高达98%,结果表明碳包覆的LiFePO_4样品的电化学性能得到了很大提高。  相似文献   

18.
稳定的非贵金属双功能电催化剂是可再生能源驱动的波动全水电解面临的难题之一。本文在三维碳纤维布上电沉积制备了多孔Ni–Fe金属阵列,并在此基础上进行原位氧化和化学硫化,构建了一种新型的自支撑分级多孔NixFe–S/NiFe2O4异质结构双功能电催化剂。研究结果表明,NixFe–S/NiFe2O4异质结构催化剂对析氢反应(HER)和析氧反应(OER)都表现出良好的催化活性和稳定性,优异的催化性质与其大比表面积提供丰富的活性位点、异质结构的协同效应、超亲水表面和稳定的自支撑结构密不可分。分析结果证析氧过程异质结构中的NixFe–S转化为金属氧化物/氢氧化物和Ni3S2。与商用20wt% Pt/C||IrO2-Ta2O5相比,自支撑Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4在10-500mA/cm2的波动电流密度范围内表现出更好的稳定性和更低的槽电压。在500 mA/cm2的工业电流密度下,Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4的槽电压仅为约3.91 V,比Pt/C||IrO2–Ta2O5 (约4.79 V)降低了约20%。  相似文献   

19.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

20.
采用水热法制备SnS2微米花(MFs),以聚多巴胺衍生的氮掺杂碳(NC)作为还原剂和缓冲基质,合成了SnS2/SnS/NC异质结构微米花(SSNC MFs)作为钾离子电池负极材料。SnS2和SnS形成的异质界面加快了电荷的转移,进而改善了电化学动力学。同时,NC增强了复合材料的导电性和结构稳定性。因而,SSNC MFs电极在0.1 A/g下,循环50周的可逆比容量为492.4 mAh/g, 2.0 A/g下仍保持在199.6 mAh/g,远大于相同测试条件下的SnS2MFs电极(分别为132.1和28.4 mAh/g),表现出显著提升的可逆比容量、循环稳定性和倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号