首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

2.
设A(G)为图G的邻接矩阵,D(G)为图G的度对角矩阵,称L(G)=D(G)-A(G)为图G的拉普拉斯矩阵,则特征多项式?G(μ)=det(μI-L(G))的所有根称为图G的拉普拉斯特征值。一个端点的度不小于3,另一个端点的度等于1的路,被称为外部路。对于任意图G,如果G的外部路上包含P3子图,则删除P3不影响图G中拉普拉斯特征值1的重数。通过递归删除外部路上的P3,刻画了不含拉普拉斯特征值1的星型树、双星树和三星树。  相似文献   

3.
设G是一个n阶简单图,其无符号拉普拉斯特征值为q1(G)≥q2(G)≥…≥qn(G).图G的无符号拉普拉斯分离度为SQ(G)=q1(G)-q2(G).研究了三圈图和四圈图的最大无符号拉普拉斯分离度,并刻画了相应的极图.  相似文献   

4.
设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。  相似文献   

5.
设G=(V,E)为简单连通图.图G的Sum-connectivity指标被定义为■,其中du表示顶点u的度.用q(G)表示图G的无符号拉普拉斯谱半径.本文研究了χ(G)与q(G)之间的关系,证明了对于所有顶点数n≥3的简单连通图G,都有■等式成立当且仅当G?Sn.  相似文献   

6.
基于图G,定义了三种关联图G1,G2和G3,其拉普拉斯矩阵可以经过恰当排序表出。利用图论和行列式的性质以及代数组合的方法,研究这些关联图的拉普拉斯谱和基尔霍夫指标,最后得出了相应的结果。  相似文献   

7.
令G为n个顶点的图,L(G)与Q(G)分别表示图G的拉普拉斯矩阵和无符号拉普拉斯矩阵。多项式π(L(G);x)=per(xI-L(G))(或π(Q(G);x)=per(xI-Q(G)))称为G的拉普拉斯积和多项式(或无符号拉普拉斯积和多项式)。在本文中,证明了两类双圈图是(无符号)拉普拉斯积和多项式确定的。  相似文献   

8.
设G是一个简单无向图,A是图G的邻接矩阵,对角矩阵D=diag(dl,d2,…,dn)是G的顶点度矩阵,则L+=D+A称为G的拟拉普拉斯矩阵.本文研究了G的拟拉普拉斯矩阵的特征多项式QG(μ)的系数,利用图G的边数、度序列和三角形个数给出了QG(μ)的一些系数的代数表达式.  相似文献   

9.
设G是一个具有n个顶点、m条边的简单图,S(G)表示G的Seidel矩阵,d_i表示顶点v_i的度,又以DS(G)=diag(n-1-2d_1,n-1-2d_2,…,n-1-2d_n)来表示对角矩阵,再依次定义图G的Seidel拉普拉斯矩阵为SL(G)=DS(G)-S(G)、图G的Seidel无符号拉普拉斯矩阵为SL~+(G)=DS(G)+S(G)和图G的Seidel无符号拉普拉斯能量为■,这里σ1L+,σ2L+,…,σnL+为矩阵SL+(G)的特征值.文章利用不等式讨论单圈图G的Seidel无符号拉普拉斯能量的上界,得到了几个有意义的结果.  相似文献   

10.
设G=(V(G)),E(G)),H=(V(H),E(H))是两个简单的连通图,定义与的Cartesian积G×H图是:其顶点集为V(G×H)=V(G)×V(H),其中任何两个顶点(u,u’),(v,v’),相邻当且仅当u=v且u’,v’在H中相邻;或u’=v’且u,v在G中相邻,这里u,v∈V(G),u’,v’∈V(H).本文研究两个图的Cartesian图的拉普拉斯矩阵的最大特征值,得到如下结论:设简单图G具有n顶点m条边,图H具有P个顶点q条边,那么G和H的Cartesian积图G×H的拉普拉斯最大特征值p(L(G×H))≤2m/n[1+(n-1)(((n3/4m2)-(1/n-1))~(1/2))]+((2p-1)~(1/2))+1.  相似文献   

11.
设正则图G1和G2的剖分Q-邻接点冠图G1□·QG2是由Q(G1)和|V(G1)|个点不交的G2的拷贝,通过连接V(G1)中第i 个顶点的所有邻点与第i个G2的拷贝的所有点后得到的图; 剖分Q-邻接边冠图G1□—〓QG2是由Q(G1)和|I(G1)|个点不交的G2的拷贝,通过连接 I(G1)中第 i个顶点的所有邻点与第i个G2的拷贝的所有点后得到的图。其中Q(G1)是由图G1的每条边上插入一个新点且当图G1的2条边相邻时对应的2个新点之间连接一条边后得到的图, I(G1)是图G1中每条边上插入的新点所构成的集合。分别确定了剖分Q-邻接点冠图G1□·QG2和剖分Q-邻接边冠图G1□—〓QG2 的广义特征多项式及其相应的Φ-谱。得到了G1□·QG2和G1□—〓QG2的规范拉普拉斯谱, 同时也构造了一些Φ-同谱无穷类。  相似文献   

12.
图G1和G2的克罗内克积G1⊗G2具有点集V(G1)⊗V(G2),在G1⊗G2中两个点(u1,v1)和(u2,v2)相邻当且仅当 u1u2∈E(G1)且 v1v2∈E(G2)。对整可逆图(即图的邻接矩阵的逆矩阵中只包含整数)的克罗内克积的逆进行刻画。  相似文献   

13.
设d1,d2,…,dk是k个非负整数,若图G=(V,E)的顶点集V能被剖分成k个子集V1,V2,…,Vk,使得对任意的i=1,2,…,k,Vi的点导出子图G[Vi]的最大度至多为di,则称图G是(d1,d2,…,dk)-可染的。关于平面图的染色,有以下结论:不含4-圈或弦6-圈的平面图是(3,0,0)-可染的。  相似文献   

14.
设φ是群G的自同构, 如果对于任意的x∈G, 都有φ(x)=(v-11xε1v1)(v-12xε2v2)…(v-1mxεmvm),其中εi=±1, v1,v2,…,vm是G中固定的元素,那么称φ是G的polynomial自同构。证明了如果G是幂零类为c的幂零群被导长为d的可解群的扩张, 那么G的polynomial自同构生成的群是幂零类至多为c-1的幂零群被导长至多为2d的可解群的扩张。  相似文献   

15.
对于一个图G和一个正整数k,若图G中任意一条阶数为k的路都至少包含集合S?V(G)中的一个顶点,那么集合S就为图G的一个k-路点覆盖。最小的k-路点覆盖基数记为ψk(G),为图G的k-路点覆盖数。研究圈图分别与圈图、完全图及完全二部图做笛卡尔乘积图的k-路点覆盖,得到ψk(G)相关的精确值和上下界。  相似文献   

16.
图的拉普拉斯矩阵是指其度对角矩阵和其邻接矩阵之差.设S(G)是图G的前两大的拉普拉斯特征值之和,在所有n阶的连通图中,S(G)的最小值一旦确定,相应的极图也被唯一地刻画.  相似文献   

17.
设G为n阶简单连通图,若L(G)为图G的度对角矩阵与邻接矩阵的差,则称L(G)为图G的Laplacian矩阵.结合非负矩阵谱理论,利用图的顶点度和平均二次度给出了图G的Laplacian矩阵的谱半径的新上界,同时给出了达到上界的极图.  相似文献   

18.
图G的k-邻点可区别边染色是指G的一个正常k-边染色满足对任意相邻顶点u和v,与u关联的边所染颜色集合和与v关联的边所染颜色集合不同。使G有k-邻点可区别边染色的k的最小值称为G的邻点可区别边色数,记作χ'a(G)。通过运用权转移方法研究了无相交三角形平面图的邻点可区别边色数,证明了若图G为无相交三角形平面图,则χ'a(G)≤max{Δ(G)+2,10}。  相似文献   

19.
单圈图的Laplacian谱   总被引:3,自引:0,他引:3  
G 是一个图,A(G),D(G)分别是G 的邻接矩阵和顶点度序列对角矩阵,则矩阵L(G)=D(G)-A(G)称为G 的Laplacian 矩阵。作者考察了单圈图的Laplacian 矩阵的谱性质,并着重讨论了单圈图的代数连通度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号