首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1?AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163?±?6?kilometres, density 2.52?±?0.05 grams per cm(3) and a high visible geometric albedo, Pv = 0.96(+0.09)(-0.04). No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ~1?nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun.  相似文献   

2.
Stellar occultations--the passing of a relatively nearby body in front of a background star--can be used to probe the atmosphere of the closer body with a spatial resolution of a few kilometres (ref. 1). Such observations can yield the scale height, temperature profile, and other information about the structure of the occulting atmosphere. Occultation data acquired for Pluto's atmosphere in 1988 revealed a nearly isothermal atmosphere above a radius of approximately 1,215 km. Below this level, the data could be interpreted as indicating either an extinction layer or the onset of a large thermal gradient, calling into question the fundamental structure of this atmosphere. Another question is to what extent Pluto's atmosphere might be collapsing as it recedes from the Sun (passing perihelion in 1989 in its 248-year orbital period), owing to the extreme sensitivity of the equilibrium surface pressure to the surface temperature. Here we report observations at a variety of visible and infrared wavelengths of an occultation of a star by Pluto in August 2002. These data reveal evidence for extinction in Pluto's atmosphere and show that it has indeed changed, having expanded rather than collapsed, since 1988.  相似文献   

3.
被称为第九大行星的冥王星具有与其它八大行星不同的高倾角、高偏心率的共振锁定轨道,而在新发现的外太阳系的Kuiper带中许多天体却具有与之相似的轨道性质,因此冥王星更像是一颗Kuiper带天体而不是大行星.  相似文献   

4.
Pluto and its satellite, Charon (discovered in 1978; ref. 1), appear to form a double planet, rather than a hierarchical planet/satellite couple. Charon is about half Pluto's size and about one-eighth its mass. The precise radii of Pluto and Charon have remained uncertain, leading to large uncertainties on their densities. Although stellar occultations by Charon are in principle a powerful way of measuring its size, they are rare, as the satellite subtends less than 0.3 microradians (0.06 arcsec) on the sky. One occultation (in 1980) yielded a lower limit of 600 km for the satellite's radius, which was later refined to 601.5 km (ref. 4). Here we report observations from a multi-station stellar occultation by Charon, which we use to derive a radius, R(C) = 603.6 +/- 1.4 km (1sigma), and a density of rho = 1.71 +/- 0.08 g cm(-3). This occultation also provides upper limits of 110 and 15 (3sigma) nanobar for an atmosphere around Charon, assuming respectively a pure nitrogen or pure methane atmosphere.  相似文献   

5.
The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found--perhaps frequently--around other large Kuiper belt objects.  相似文献   

6.
Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in diameter and there are no fundamental reasons why Pluto should not have more satellites. Here we report the discovery of two additional moons around Pluto, provisionally designated S/2005 P 1 (hereafter P1) and S/2005 P 2 (hereafter P2), which makes Pluto the first Kuiper belt object known to have multiple satellites. These new satellites are much smaller than Charon, with estimates of P1's diameter ranging from 60 km to 165 km, depending on the surface reflectivity; P2 is about 20 per cent smaller than P1. Although definitive orbits cannot be derived, both new satellites appear to be moving in circular orbits in the same orbital plane as Charon, with orbital periods of approximately 38 days (P1) and approximately 25 days (P2).  相似文献   

7.
Bertoldi F  Altenhoff W  Weiss A  Menten KM  Thum C 《Nature》2006,439(7076):563-564
The most distant known object in the Solar System, 2003 UB313 (97 au from the Sun), was recently discovered near its aphelion. Its high eccentricity and inclination to the ecliptic plane, along with its perihelion near the orbit of Neptune, identify it as a member of the 'scattered disk'. This disk of bodies probably originates in the Kuiper belt objects, which orbit near the ecliptic plane in circular orbits between 30 and 50 au, and may include Pluto as a member. The optical brightness of 2003 UB313, if adjusted to Pluto's distance, is greater than that of Pluto, which suggested that it might be larger than Pluto. The actual size, however, could not be determined from the optical measurements because the surface reflectivity (albedo) was unknown. Here we report observations of the thermal emission of 2003 UB313 at a wavelength of 1.2 mm, which in combination with the measured optical brightness leads to a diameter of 3,000 +/- 300 +/- 100 km. Here the first error reflects measurement uncertainties, while the second derives from the unknown object orientation. This makes 2003 UB313 the largest known trans-neptunian object, even larger than Pluto (2,300 km). The albedo is 0.60 +/- 0.10 +/- 0.05, which is strikingly similar to that of Pluto, suggesting that the methane seen in the optical spectrum causes a highly reflective icy surface.  相似文献   

8.
Ballester GE  Sing DK  Herbert F 《Nature》2007,445(7127):511-514
About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.  相似文献   

9.
Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.  相似文献   

10.
Each giant planet of the Solar System has two main types of moons. 'Regular' moons are typically larger satellites with prograde, nearly circular orbits in the equatorial plane of their host planets at distances of several to tens of planetary radii. The 'irregular' satellites (which are typically smaller) have larger orbits with significant eccentricities and inclinations. Despite these common features, Neptune's irregular satellite system, hitherto thought to consist of Triton and Nereid, has appeared unusual. Triton is as large as Pluto and is postulated to have been captured from heliocentric orbit; it traces a circular but retrograde orbit at 14 planetary radii from Neptune. Nereid, which exhibits one of the largest satellite eccentricities, is believed to have been scattered from a regular satellite orbit to its present orbit during Triton's capture. Here we report the discovery of five irregular moons of Neptune, two with prograde and three with retrograde orbits. These exceedingly faint (apparent red magnitude m(R) = 24.2-25.4) moons, with diameters of 30 to 50 km, were presumably captured by Neptune.  相似文献   

11.
The planet in the system HD209458 is the first one for which repeated transits across the stellar disk have been observed. Together with radial velocity measurements, this has led to a determination of the planet's radius and mass, confirming it to be a gas giant. But despite numerous searches for an atmospheric signature, only the dense lower atmosphere of HD209458b has been observed, through the detection of neutral sodium absorption. Here we report the detection of atomic hydrogen absorption in the stellar Lyman alpha line during three transits of HD209458b. An absorption of 15 +/- 4% (1sigma) is observed. Comparison with models shows that this absorption should take place beyond the Roche limit and therefore can be understood in terms of escaping hydrogen atoms.  相似文献   

12.
The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects.  相似文献   

13.
A stability limit for the atmospheres of giant extrasolar planets   总被引:1,自引:0,他引:1  
Koskinen TT  Aylward AD  Miller S 《Nature》2007,450(7171):845-848
Recent observations of the planet HD209458b indicate that it is surrounded by an expanded atmosphere of atomic hydrogen that is escaping hydrodynamically. Theoretically, it has been shown that such escape is possible at least inside an orbit of 0.1 au (refs 4 and 5), and also that H3+ ions play a crucial role in cooling the upper atmosphere. Jupiter's atmosphere is stable, so somewhere between 5 and 0.1 au there must be a crossover between stability and instability. Here we show that there is a sharp breakdown in atmospheric stability between 0.14 and 0.16 au for a Jupiter-like planet orbiting a solar-type star. These results are in contrast to earlier modelling that implied much higher thermospheric temperatures and more significant evaporation farther from the star. (We use a three-dimensional, time-dependent coupled thermosphere-ionosphere model and properly include cooling by H3+ ions, allowing us to model globally the redistribution of heat and changes in molecular composition.) Between 0.2 and 0.16 au cooling by H3+ ions balances heating by the star, but inside 0.16 au molecular hydrogen dissociates thermally, suppressing the formation of H3+ and effectively shutting down that mode of cooling.  相似文献   

14.
Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.  相似文献   

15.
The four final rotation states of Venus.   总被引:1,自引:0,他引:1  
A C Correia  J Laskar 《Nature》2001,411(6839):767-770
Venus rotates very slowly on its axis in a retrograde direction, opposite to that of most other bodies in the Solar System. To explain this peculiar observation, it has been generally believed that in the past its rotational axis was itself rotated to 180 degrees as a result of core-mantle friction inside the planet, together with atmospheric tides. But such a change has to assume a high initial obliquity (the angle between the planet's equator and the plane of the orbital motion). Chaotic evolution, however, allows the spin axis to flip for a large set of initial conditions. Here we show that independent of uncertainties in the models, terrestrial planets with dense atmosphere like Venus can evolve into one of only four possible rotation states. Moreover, we find that most initial conditions will drive the planet towards the configuration at present seen at Venus, albeit through two very different evolutionary paths. The first is the generally accepted view whereby the spin axis flips direction. But we have also found that it is possible for Venus to begin with prograde rotation (the same direction as the other planets) yet then develop retrograde rotation while the obliquity goes towards zero: a rotation of the spin axis is not necessary in this case.  相似文献   

16.
Brogi M  Snellen IA  de Kok RJ  Albrecht S  Birkby J  de Mooij EJ 《Nature》2012,486(7404):502-504
The giant planet orbiting τ Bo?tis (named τ Bo?tis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Bo?tis b. At a spectral resolution of ~100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5°?±?1.5° and a mass 5.95?±?0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Bo?tis b by the ultraviolet emission from the active host star.  相似文献   

17.
'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.  相似文献   

18.
Key steps in atmospheric evolution occurred in the Archaean. The Hadean atmosphere was created by the inorganic processes of volatile accretion from space and degassing from the interior, and then modified by chemical and photochemical processes. The air was probably initially anoxic, though there may have been a supply of oxidation power as a consequence of hydrodynamic escape to space of hydrogen from water. Early subduction may have removed CO2 and the Hadean planet may have been icy. In the Archaean, as anoxygenic and then oxygenic photosynthesis evolved, biological activity remade the atmosphere. Sedimentological evidence implies there were liquid oceans despite the faint young Sun. These oceans may have been sustained by the greenhouse warming effect of biologically-made methane. Oxygenesis in the late Archaean would have released free O2 into the water. This would have created oxic surface waters, challenging the methane greenhouse. After the Great Oxidation Event around 2.3 to 2.4 billion years ago, the atmosphere itself became oxic, perhaps triggering a glacial crisis by cutting methane-caused greenhouse warming. By the early Proterozoic, all the key biochemical processes that maintain the modern atmosphere were probably present in the microbial community.  相似文献   

19.
Amazing achievements and accomplishments of space science and technologies in the past half-century, have profoundly affected all disciplines of natural science and engineering. By the end of 20 th Century, man or man-made spacecrafts landed, or approached and surveyed all planets of solar system and their moons except Pluto. Biologists believe that life may emerge and evolve wherever liquid water exists. No liquid water is ever found yet on all planets and their moons in Solar System except for our Earth. Our mother planet turned out to be the only life-supporting oasis within 4 light years of the Milky Way. It is suggested in this article that time has come for science and engineering communities to study and prepare interstellar flight of manned or unmanned spacecrafts beyond Solar System. Four issues are to be addressed as prerequisite for such flight, namely, detailed survey of nearby space beyond Solar System, design of nuclear fusion rocket engine, long-sustainable on-board life-supporting system and breakthrough of the light barrier.  相似文献   

20.
The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600-650 km (ref. 5), corresponding to a density of 1.56 +/- 0.22 g cm(-3) (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 +/- 8 km, a bulk density of 1.72 +/- 0.15 g cm(-3), and rock-mass fraction 0.63 +/- 0.05. We do not detect a significant atmosphere and place 3sigma upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto-Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号