首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Felzer KR  Brodsky EE 《Nature》2006,441(7094):735-738
The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults.  相似文献   

2.
Mueller K  Hough SE  Bilham R 《Nature》2004,429(6989):284-288
Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois--an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large mid-plate earthquake sequences may extend over a much broader region than previously suspected.  相似文献   

3.
Toda S  Stein RS  Sagiya T 《Nature》2002,419(6902):58-61
Magma intrusions and eruptions commonly produce abrupt changes in seismicity far from magma conduits that cannot be associated with the diffusion of pore fluids or heat. Such 'swarm' seismicity also migrates with time, and often exhibits a 'dog-bone'-shaped distribution. The largest earthquakes in swarms produce aftershocks that obey an Omori-type (exponential) temporal decay, but the duration of the aftershock sequences is drastically reduced, relative to normal earthquake activity. Here we use one of the most energetic swarms ever recorded to study the dependence of these properties on the stress imparted by a magma intrusion. A 1,000-fold increase in seismicity rate and a 1,000-fold decrease in aftershock duration occurred during the two-month-long dyke intrusion. We find that the seismicity rate is proportional to the calculated stressing rate, and that the duration of aftershock sequences is inversely proportional to the stressing rate. This behaviour is in accord with a laboratory-based rate/state constitutive law, suggesting an explanation for the occurrence of earthquake swarms. Any sustained increase in stressing rate--whether due to an intrusion, extrusion or creep event--should produce such seismological behaviour.  相似文献   

4.
Aftershocks driven by a high-pressure CO2 source at depth   总被引:2,自引:0,他引:2  
Miller SA  Collettini C  Chiaraluce L  Cocco M  Barchi M  Kaus BJ 《Nature》2004,427(6976):724-727
In northern Italy in 1997, two earthquakes of magnitudes 5.7 and 6 (separated by nine hours) marked the beginning of a sequence that lasted more than 30 days, with thousands of aftershocks including four additional events with magnitudes between 5 and 6. This normal-faulting sequence is not well explained with models of elastic stress transfer, particularly the persistence of hanging-wall seismicity that included two events with magnitudes greater than 5. Here we show that this sequence may have been driven by a fluid pressure pulse generated from the coseismic release of a known deep source of trapped high-pressure carbon dioxide (CO2). We find a strong correlation between the high-pressure front and the aftershock hypocentres over a two-week period, using precise hypocentre locations and a simple model of nonlinear diffusion. The triggering amplitude (10-20 MPa) of the pressure pulse overwhelms the typical (0.1-0.2 MPa) range from stress changes in the usual stress triggering models. We propose that aftershocks of large earthquakes in such geologic environments may be driven by the coseismic release of trapped, high-pressure fluids propagating through damaged zones created by the mainshock. This may provide a link between earthquakes, aftershocks, crust/mantle degassing and earthquake-triggered large-scale fluid flow.  相似文献   

5.
The mainshock of April 20, 2013 Sichuan Lushan M S7.0 earthquake was relocated using a 3-D velocity model. Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake. The locations of 2405 aftershocks were determined. The location errors in E-W, N-S and U-D direction were 0.30, 0.29 and 0.59 km on average, respectively. The location of the mainshock is 102.983°E, 30.291°N and the focal depth is 17.6 km. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth profiles show fault planes dip to the northwest, manifested itself as a listric thrust fault. The dip angle is steep in the shallow crust and gentle in the deep crust. Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault, the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We speculate it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.  相似文献   

6.
Remote triggering of deep earthquakes in the 2002 Tonga sequences   总被引:1,自引:0,他引:1  
Tibi R  Wiens DA  Inoue H 《Nature》2003,424(6951):921-925
It is well established that an earthquake in the Earth's crust can trigger subsequent earthquakes, but such triggering has not been documented for deeper earthquakes. Models for shallow fault interactions suggest that static (permanent) stress changes can trigger nearby earthquakes, within a few fault lengths from the causative earthquake, whereas dynamic (transient) stresses carried by seismic waves may trigger earthquakes both nearby and at remote distances. Here we present a detailed analysis of the 19 August 2002 Tonga deep earthquake sequences and show evidence for both static and dynamic triggering. Seven minutes after a magnitude 7.6 earthquake occurred at a depth of 598 km, a magnitude 7.7 earthquake (664 km depth) occurred 300 km away, in a previously aseismic region. We found that nearby aftershocks of the first mainshock are preferentially located in regions where static stresses are predicted to have been enhanced by the mainshock. But the second mainshock and other triggered events are located at larger distances where static stress increases should be negligible, thus suggesting dynamic triggering. The origin times of the triggered events do not correspond to arrival times of the main seismic waves from the mainshocks and the dynamically triggered earthquakes frequently occur in aseismic regions below or adjacent to the seismic zone. We propose that these events are triggered by transient effects in regions near criticality, but where earthquakes have difficulty nucleating without external influences.  相似文献   

7.
Triggering of earthquake aftershocks by dynamic stresses   总被引:20,自引:0,他引:20  
Kilb D  Gomberg J  Bodin P 《Nature》2000,408(6812):570-574
It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the near-field, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude Mw = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby.  相似文献   

8.
采用已公布的1个前震和3个主震震源可变滑动模型,计算了日本Mw7.3级前震、M_w9.0级主震产生的同震库仑应力变化,并采用哈佛Global CMT和日本F-net余震目录,在不同有效摩擦系数取值下计算了主震对余震的触发效应,分析了应力空间分布与余震活动空间分布的相关性。研究表明,日本地震前震对主震有触发作用,前震在主震处产生的正应力变化为0.404 bar,剪应力变化0.282 bar,同震库仑应力变化为0.517 bar,应力变化超过了应力触发阈值0.1 bar,达5倍之多,属于典型的地震应力触发,而非诱发事件。主震对后续余震有触发效应,最小触发率为57%,最大达到75%。余震多分布在主震产生的同震库仑应力红色加载区。同时,分析了可变滑动模型、有效摩擦系数、余震目录、震级及节面选取等对计算结果的影响。可变滑动模型、有效摩擦系数变化对计算结果影响不大,余震目录、震级及节面选取对结果有一定影响,尤其是当余震目录足够多、震级足够大时,计算结果更加可靠。为了深入讨论节面选取对计算结果的影响,对余震两个节面上库仑应力、剪切应力及正应力变化差值进行了频次统计。分析显示节面选取对正应力有一定影响,而对库仑应力及剪应力影响不大。  相似文献   

9.
Parsons T  Ji C  Kirby E 《Nature》2008,454(7203):509-510
On 12 May 2008, the devastating magnitude 7.9 (Wenchuan) earthquake struck the eastern edge of the Tibetan plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After such a large-magnitude earthquake, rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. The mainshock of the 12 May earthquake ruptured with as much as 9 m of slip along the boundary between the Longmen Shan and Sichuan basin, and demonstrated the complex strike-slip and thrust motion that characterizes the region. The Sichuan basin and surroundings are also crossed by other active strike-slip and thrust faults. Here we present calculations of the coseismic stress changes that resulted from the 12 May event using models of those faults, and show that many indicate significant stress increases. Rapid mapping of such stress changes can help to locate fault sections with relatively higher odds of producing large aftershocks.  相似文献   

10.
2009年青海海西地震序列的潜热通量异常时空特征   总被引:1,自引:1,他引:0  
 采用美国国家环境预报中心(NCEP)的地表潜热通量资料,对2009年8月28日青海海西6.4级地震及其余震前的潜热变化过程进行分析发现,① 主震前6d,震中附近开始出现潜热异常,然后异常幅度增强、面积扩大,并向震中迁移;② 余震前也出现了明显的潜热异常,但其时空演化过程不同于主震前的潜热异常;③ 潜热异常位置与震中具有良好的空间对应关系,其中都兰余震前的潜热异常位置与震中位置重合。本案例分析表明,震前地表潜热异常应是地震孕育尤其是临震过程的一种典型的岩石圈-盖层-大气耦合(LCA)效应,进一步的研究有望揭示特定地震区震前及余震序列的潜热通量异常规律,有益于地震监测预报研究与防灾减灾。  相似文献   

11.
Camacho A  Lee JK  Hensen BJ  Braun J 《Nature》2005,435(7046):1191-1196
Collision tectonics and the associated transformation of continental crust to high-pressure rocks (eclogites) are generally well-understood processes, but important contradictions remain between tectonothermal models and petrological-isotopic data obtained from such rocks. Here we use 40Ar-39Ar data coupled with a thermal model to constrain the time-integrated duration of an orogenic cycle (the burial and exhumation of a particular segment of the crust) to be less than 13 Myr. We also determine the total duration of associated metamorphic events to be approximately 20 kyr, and of individual heat pulses experienced by the rocks to be as short as 10 years. Such short timescales are indicative of rapid tectonic processes associated with catastrophic deformation events (earthquakes). Such events triggered transient heat advection by hot fluid along deformation (shear) zones, which cut relatively cool and dry subducted crust. In contrast to current thermal models that assume thermal equilibrium and invoke high ambient temperatures in the thickened crust, our non-steady-state cold-crust model satisfactorily explains several otherwise contradictory geological observations.  相似文献   

12.
McGuire JJ  Boettcher MS  Jordan TH 《Nature》2005,434(7032):457-461
East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.  相似文献   

13.
Evidence of power-law flow in the Mojave desert mantle   总被引:2,自引:0,他引:2  
Freed AM  Bürgmann R 《Nature》2004,430(6999):548-551
Studies of the Earth's response to large earthquakes can be viewed as large rock deformation experiments in which sudden stress changes induce viscous flow in the lower crust and upper mantle that lead to observable postseismic surface deformation. Laboratory experiments suggest that viscous flow of deforming hot lithospheric rocks is characterized by a power law in which strain rate is proportional to stress raised to a power, n (refs 2, 3). Most geodynamic models of flow in the lower crust and upper mantle, however, resort to newtonian (linear) stress-strain rate relations. Here we show that a power-law model of viscous flow in the mantle with n = 3.5 successfully explains the spatial and temporal evolution of transient surface deformation following the 1992 Landers and 1999 Hector Mine earthquakes in southern California. A power-law rheology implies that viscosity varies spatially with stress causing localization of strain, and varies temporally as stress evolves, rendering newtonian models untenable. Our findings are consistent with laboratory-derived flow law parameters for hot and wet olivine--the most abundant mineral in the upper mantle--and support the contention that, at least beneath the Mojave desert, the upper mantle is weaker than the lower crust.  相似文献   

14.
Variations in earthquake-size distribution across different stress regimes   总被引:16,自引:0,他引:16  
Schorlemmer D  Wiemer S  Wyss M 《Nature》2005,437(7058):539-542
The earthquake size distribution follows, in most instances, a power law, with the slope of this power law, the 'b value', commonly used to describe the relative occurrence of large and small events (a high b value indicates a larger proportion of small earthquakes, and vice versa). Statistically significant variations of b values have been measured in laboratory experiments, mines and various tectonic regimes such as subducting slabs, near magma chambers, along fault zones and in aftershock zones. However, it has remained uncertain whether these differences are due to differing stress regimes, as it was questionable that samples in small volumes (such as in laboratory specimens, mines and the shallow Earth's crust) are representative of earthquakes in general. Given the lack of physical understanding of these differences, the observation that b values approach the constant 1 if large volumes are sampled was interpreted to indicate that b = 1 is a universal constant for earthquakes in general. Here we show that the b value varies systematically for different styles of faulting. We find that normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Given that thrust faults tend to be under higher stress than normal faults we infer that the b value acts as a stress meter that depends inversely on differential stress.  相似文献   

15.
Freed AM  Lin J 《Nature》2001,411(6834):180-183
Stress changes in the crust due to an earthquake can hasten the failure of neighbouring faults and induce earthquake sequences in some cases. The 1999 Hector Mine earthquake in southern California (magnitude 7.1) occurred only 20 km from, and 7 years after, the 1992 Landers earthquake (magnitude 7.3). This suggests that the Hector Mine earthquake was triggered in some fashion by the earlier event. But uncertainties in the slip distribution and rock friction properties associated with the Landers earthquake have led to widely varying estimates of both the magnitude and sign of the resulting stress change that would be induced at the location of the Hector Mine hypocentre-with estimates varying from -1.4 bar (ref. 6) to +0.5 bar (ref. 7). More importantly, coseismic stress changes alone cannot satisfactorily explain the delay of 7 years between the two events. Here we present the results of a three-dimensional viscoelastic model that simulates stress transfer from the ductile lower crust and upper mantle to the brittle upper crust in the 7 years following the Landers earthquake. Using viscoelastic parameters that can reproduce the observed horizontal surface deformation following the Landers earthquake, our calculations suggest that lower-crustal or upper-mantle flow can lead to postseismic stress increases of up to 1-2 bar at the location of the Hector Mine hypocentre during this time period, contributing to the eventual occurrence of the 1999 Hector Mine earthquake. These results attest to the importance of considering viscoelastic processes in the assessment of seismic hazard.  相似文献   

16.
为了研究降雨对边坡渗流场孔隙水压力分布的影响,根据岩土饱和-非饱和渗流理论,利用SEEP渗流有限元程序计算给定降雨条件下孔隙水压力的分布,结合一个土坡算例,探求降雨强度、降雨持时以及土壤渗透系数等参数变化对渗流场的影响。通过记录坡肩处孔隙水压力变化,得到不同降雨类型下雨水入渗深度的规律;并记录下坡体内孔隙水压力随时间的变化规律,得到持续降雨条件下不同时刻坡体内孔隙水压力分布特点,可以为边坡的稳定性分析和滑坡预测提供依据。  相似文献   

17.
Relocation result shows that the aftershocks of the Lushan M S7.0 earthquake spatially distribute in a shape like “half bowl”, indicating that the rupture structure of the mainshock is a highly curved surface. Kinematic analysis reveals that a laterally varied dislocation pattern occurs on this curved fault even though a single relative horizontal movement controls slip on this fault. Reverse slip prevails on curved fault. However, significant normal slip is predicted near the edge of north flank. Moreover, the north flank features left-lateral slip while the south flank contrarily features right-lateral slip. The relative scope of aftershock distribution implies inadequate breaking of the curved fault during the mainshock, calling for the attention to potential earthquake risk on the neighboring portions of the coseismic rupture due to significant increase of the coseismic Coulomb stress. Coseismic stress modeling also reveals that it is unnecessary for the stress on ruptured part to be unloaded following the earthquakes on the curved fault. The coseismic stress loading on ruptured elements unveils the specialty of faulting for the Lushan earthquake and we conclude that this specialty is due to the highly curved fault geometry.  相似文献   

18.
Earthquakes as beacons of stress change   总被引:2,自引:0,他引:2  
Seeber L  Armbruster JG 《Nature》2000,407(6800):69-72
Aftershocks occurring on faults in the far-field of a large earthquake rupture can generally be accounted for by changes in static stress on these faults caused by the rupture. This implies that faults interact, and that the timing of an earthquake can be affected by previous nearby ruptures. Here we explore the potential of small earthquakes to act as 'beacons' for the mechanical state of the crust. We investigate the static-stress changes resulting from the 1992 Landers earthquake in southern California which occurred in an area of high seismic activity stemming from many faults. We first gauge the response of the regional seismicity to the Landers event with a new technique, and then apply the same method to the inverse problem of determining the slip distribution on the main rupture from the seismicity. Assuming justifiable parameters, we derive credible matches to slip profiles obtained directly from the Landers mainshock. Our results provide a way to monitor mechanical conditions in the upper crust, and to investigate processes leading to fault failure.  相似文献   

19.
利用远震P波观测数据, 研究2012年印度洋Mw 7.2地震是否近场触发海沟附近余震的问题。根据区域化水波直接触发机制和间接激发机制的假设, 提出线性断层反演模型和双点源反演模型。远震P波数据反演结果表明, 基于区域化水波直接触发机制的线性断层模型对波形的拟合效果更好, 并且2012年印度洋地震没有触发海沟附近的余震。  相似文献   

20.
2016年11月25日新疆阿克陶发生了MW6.6地震。通常震中所处断层的破裂特性与周围区域应力场的动力学特征具有紧密的联系。通过对发震构造断层的精确刻画以及区域地壳中应力释放细节的深入探究,可以加深对发震构造周围地震动力学特征的认识,同时也对判定当地未来一段时间内的地震活动趋势提供了重要参考。首先搜集整理了震源附近的26条余震震源机制,利用网格搜索法反演得到震中附近的应力场,发现该地区主压应力方向为157.36°,倾伏角为1.15°,主张应力方向为66.56°,倾伏角为34.98°,与该地所处的帕米尔高原陆内俯冲形成近东西向断裂的右旋走滑兼有逆冲的背景相一致;然后利用389条余震精定位数据,结合高斯-牛顿算法和模拟退火算法拟合得到发震断层面的走向为103.64°、倾角为65.65°,这与木吉右旋走滑断裂的几何特征基本重合;将所求应力场投影到断层上,得到滑动角为152.77°,该地震表现为右旋走滑断层;最后利用本研究获得的区域应力张量模拟得到的该状态下的各种形状断层面的相对应力分布,发现该地震发生的断层面的相对剪应力接近1,破裂方向与震源区的最优剪切力方向相同,表明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号