共查询到15条相似文献,搜索用时 93 毫秒
1.
提出了非对称阀控制非对称缸的概念,并对传统的负载流量和负载压力重新进行了定义,依此对非对称阀控制非对称缸的静态特性和动态特性进行了分析,推导了其传递函数及方框图,其推导过程对此类伺服系统的设计具有积极的指导意义. 相似文献
2.
非对称阀控制非对称缸的动态特性 总被引:11,自引:0,他引:11
非对称阀控制非对称缸常见于液压伺服系统中,其主要动态性能参数和流量增益、流量-压力系统对该类系统的动态性能能有重要的影响,当使用非对称阀控制非对称液压时,阀的开度以及面积梯度的变化直接影响流量增益和流量-压力系数,为此,重点讨论了诸参数间的理论关系,这也是选择和设计此类系统的依据。 相似文献
3.
阀控非对称缸液压系统建模研究 总被引:1,自引:0,他引:1
考虑了阀控非对称缸液压系统中阀与缸之间采用软管连接的情况,构建了系统方程,推导了活塞杆在两个方向,活塞杆伸出和活塞杆缩回时的两个传递函数,分析了两个方向的增益与固有频率,采用了SimHydraulics实物仿真,仿真结果验证了对传递函数的理论分析. 相似文献
4.
《华中科技大学学报(自然科学版)》2017,(3):29-34
针对比例控非对称缸正反方向运动响应不一致的问题,建立了非零开口的阀控非对称缸系统的线性负载流量模型,根据数学模型分析了系统的负载流量特性,定义了非对称系统的基本状态,并将其设为非对称系统的不变结构.提出了融合负载、结构、非对称叠合量等影响因素的不变性补偿控制方法,将系统的任意非对称状态通过不变性补偿控制等价于基本状态,使得非对称系统得到对称的负载流量特性.实验结果表明:通过不变性补偿控制,比例阀控非对称缸系统在阀线性区域,非对称系统负载压力不超过泵压的1/2时,负载流量与基本状态时的负载流量误差不超过11%;非对称系统在基于不变性补偿的基础上,采用统一的比例-积分-微分(PID)控制器,使得正反向运动响应能达到基本一致. 相似文献
5.
文章建立非对称阀控非对称缸系统数学模型,针对较大弹性冲击载荷的工况构造仿真框图,并对支重轮试验台的阀控缸系统进行仿真验证。通过与台架试验效果比较,证明所建仿真模型能较准确地指导此类阀控缸系统的优化设计。 相似文献
6.
阀控非对称缸主动式伺服加载系统的数学模型 总被引:2,自引:0,他引:2
建立了阀控非对称缸主动伺服加载系统地数学模型,对的参数做了理论计算和实际测试;然后进行了仿真,并与实际测试结果进行了比较,结果表明本文的分析是正确的。 相似文献
7.
8.
聂松林 《武汉科技大学学报(自然科学版)》1997,(1)
针对对称伺服阀控制单出杆液压缸的特点,按能量守恒原则重新定义了负载压力和负载流量,推导了阀控不对称缸的数学模型,并简要分析出系统的动静态特性 相似文献
9.
《西安交通大学学报》2019,(12)
为提高存在负叠合量的阀控非对称缸系统的控制性能,提出基于神经网络的逆系统控制方法,利用神经网络逼近的逆模型与原系统复合,将复杂非线性系统转变为线性系统进行控制,建立了阀控非对称缸系统的数学模型,系统在(x_0,u)的邻域内存在相对阶,证明了系统的可逆性;采用基于遗传算法改进的BP神经网络(GA-BP)求解逆模型,并针对伺服阀存在负叠合量,以及流态存在层流和紊流两种状态的问题,建立系统的多个逆模型集,提高了逆系统的求解精度。利用AMESIM和Simulink联合仿真平台,基于参考速度切换的原则,对系统采用比例-积分-微分(PID)闭环控制器。结果表明:普通PID控制的液压缸伸出运动响应和缩回运动响应不一致,伸出运动存在0.20 mm的稳态误差,误差波动范围为0.06 mm,而缩回运动稳态误差较小,约为0.02 mm,但误差波动较大,约为0.09 mm;多逆系统复合控制的伸出缩回运动响应较一致,伸出和缩回运动均存在0.02 mm的稳态误差,误差波动范围为0.04 mm,验证了多逆模型切换控制方法可以消除阀控非对称缸系统的非对称性,降低波动负载干扰影响,提高系统的响应精度。 相似文献
10.
针对对称阀控非对称缸系统的不对称性和非线性,为了提高系统控制精度,分析了该系统的工作特性,提出了基于小脑模型神经网络(CMAC)的控制策略,设计了CMAC复合控制器;为验证CMAC复合控制器的有效性,进行了实验研究,并与普通的PID控制器进行比较.实验表明,基于CMAC的复合控制方法无须精确获取系统数学模型和负载状态,适合于对称阀控非对称缸系统的实时控制. 相似文献
11.
四通阀控非对称液压缸传递函数的分析和建立 总被引:1,自引:0,他引:1
蒙争争 《合肥学院学报(自然科学版)》2006,16(2):23-27
目前国内还未见针对四通阀控非对称液压缸传递函数的详细推导和研究,这就影响了采用此种动力元件的液压伺服系统动态性能的分析研究.针对上述情况,引入了液压缸负载流量等效面积Ap、液压缸负载压力等效面积Ac等参数,使负载流量qL和负载压降pL的定义既简单,又不失准确性,在此基础上,对四通阀控非对称液压缸的传递函数进行了深入的推导和分析. 相似文献
12.
针对目前磁流变阀输出压降较小的缺点,设计了一种可有效提高压降的径向流磁流变阀,分析了其工作原理及压降数学模型.搭建性能测试实验台对不同加载电流及不同流量下的径向流磁流变阀压降及响应性能进行试验分析;同时对磁流变阀控缸系统进行了阻尼特性分析,分别测定了不同电流、频率及振幅下的动力性能.结果表明,以径向流磁流变阀为核心元件的阀控缸系统能够输出较大阻尼力,最大阻尼力达5 kN;系统响应迅速,电流1.2 A时压降可达3.2 MPa,响应时间在100~150 ms之间.输出阻尼力连续可调,同时输出阻尼力受活塞杆运动速度影响很小,阀控缸系统能在各种工况输出稳定阻尼力. 相似文献
13.
本文针对电闭环比例压力阀的设计难点提出一种新的控制方法,不仅提高了阀的控制精度,并使阀具有在反馈通道发生故障情况下仍可继续工作的容错功能,论文还就电器调节方式、主阀速度反馈对阀性能的影响做了理论分析和试验研究, 相似文献
14.
在建立四通阀控对称液压缸动态数学模型的基础上,利用matlab中的simulink工具软件建立系统柔性仿真模型,并对其动态特性进行数字仿真研究。得到相关参数的变化对系统性能的定量影响,为该类系统的设计提供快速分析手段,并可确定原点附近使系统动态性能达到较好的一组参数值。 相似文献
15.
相比电反馈伺服阀动态特性可直接通过阀芯位移响应测试获得,机械反馈式流量伺服阀的动态特性,通常需利用动态缸作为流量传感器间接测量获得。测试结果受动态缸泄漏、阻尼、质量惯性等固有非理想化因素的影响,通常无法准确表达伺服阀本身的性能指标。基于一套实际阀控缸系统,建立Matlab-Simulink仿真模型,解析获得的频带宽结果相比实测结果误差小于0.5 %,由此建立了可准确表达阀与缸性能特性的仿真模型。在此基础上,理论给出了伺服阀本身的频率特性指标,即无泄漏无阻尼及无限刚度动态缸条件下的系统频率特性。以此为依据,分析了实际动态缸活塞质量、活塞粘性阻尼以及泄漏变化情况下,阀控缸系统频率特性偏离理想条件的变化规律。 相似文献