首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设X与Y是互不相交的拓扑空间,A是X的闭集,f:A→Y是连续映射(以下简称映射),以W表示空间X与Y的拓扑并X∪Y,亦即拓扑空间W中子集G为开集当且仅当G∩X以及G∩Y分别是X及Y的开集.今在W中,将A中点x与Y中点f(x)叠合得到一个W的商空间Z,它就称作籍助映射f:A→Y将X附贴到Y上的附贴空间(adjunction space);更准确些,Z也常常记作X∪_(f,A)Y.空间W至Z的商映射常记作p.易见p在Y上的限制给出了Y至Z的一个(在中)同胚映射,所以不妨把Y看作Z的(闭)子空间。此外,p的限制还给出了自空间X—A至Z—Y的同胚映  相似文献   

2.
本文在作者定义的模糊半预开集的基础上,在一般拓扑空间(X,T)与模糊拓扑空间(Y,T1)之间引入了模糊下与上几乎半预连续多值映射的概念,并借助于映射F*与F^*证明了模糊下几乎半预连续多值映射的五个等价条件:(1)A↓U∈T1,F*(U)∪→SPintF*(SPintSPclU);(2)若U是Y中模糊正则半预开集则F*(U)是X中的半预开集;(3)A↓U∈T1,F*(SPintSPclU)是X中的半预开集;(4)若V是Y中模糊闭集,F^*(V)∪←SPclF^*(SPclSPintV);(5)若V是Y中的模糊正则半闭集,则F^*(V)是X中的半预闭集。对于模糊上几乎半预连续多值映射也有类似的结果。  相似文献   

3.
一、引言設X与Y是二个拓撲空間,A是X的一个閉集,f:A→Y是映A到Y的一个連續映射。假若有連續映射f~*:X→Y存在,合於条件f~*|A=f,則f~*称为f的一个連續展拓(Extension)。关於这一方面的最早的又是最有名的結果大概是Tietze的展拓定理([1]頁73—78;[4]頁14),可表述如次:“設A是正規空間(Normal Space)X的一个閉子集,△是欧氏n維空間中的n维球体(Solid n-sphere)。則映A到△的任意映射总可展拓到X上。”在一般情形之下,要决定一个映射的能否展拓是一个十分困难的問題;一般性的展拓定理極为少見,且常在拓撲学上有重要应用。假若前述的映射f是拓撲的,我們也可討論f能否展拓为映X→Y的拓撲映射f~*的問題。关於这类問題近年來也得有一些結果,例如可参看[5]頁223—236和其中  相似文献   

4.
有限夹心半群T(X,Y;θ)的正则性与Green关系   总被引:1,自引:1,他引:1  
设X,Y是非空集合。记T(X,Y)为X到Y的映射全体构成的集合,θ是Y到X的一个确定的映射,α,β∈T(X,Y),定义运算:αβ=αθβ,这里,αθβ表示一般映射的合成。则T(X,Y)关于运算构成一个半群,称为夹心半群T(X,Y;θ)。当X,Y都为有限集合且|X|>1,|Y|>1时,称夹心半群T(X,Y;θ)为有限夹心半群。讨论了T(X,Y;θ)、T(X;θ)和TX之间的联系,研究了有限夹心半群T(X,Y;θ)的正则性和G reen关系。  相似文献   

5.
设X是一个非空集合,T(X)是X上的全变换半群。对X的任意非空子集Y,令T(X,Y)={α∈T〓(X):Yα⊆Y},称其为弱Y-稳定变换半群。当X为有限集且Y是X的非单点真子集时,给出了T(X,Y)的极大子半群的结构与完全分类。  相似文献   

6.
设(X,T)是Hausdorff拓扑空间,(X,A)是内可测空间,v是A上的有限内容度。本文利用非标准分析方法,给出了X上的Borel集在标准部分映射下的原象关于A Loeb可测的一个条件,对每一T∈T,有T∈L(v,A),并且对每一ε∈R~+,存在紧集C(?)T,使得L(v)(T-C)<ε。并进一步利用v的Loeb测度,构造出了X上的Radon测度L(v)·ST~(-1)。  相似文献   

7.
1975年,M.D.Weiss给出了分明拓扑空间(X.T)的诱导模糊拓扑空间(X.ω(T))的定义。并得到了分明拓扑空间和与之相应的诱导模糊拓扑空间之间关于连续性,紧性和连通性相互关系的几个有趣的性质。例如,映射f:(X.ω(T))→(Y,ω(T~*))是模糊连续的当且仅当f:(X,T)→(Y,T~*)是连续的。本文继续M.D.Weiss在这方面的工作,引入了模糊商映射、模糊紧映射、模糊强完备映射、模糊半闭映射、模糊保紧映射和模糊连通映射诸概念。证明了f:(X,ω(T))→(Y,ω(T~*))是模糊紧映射(相应地,模糊强完备映射,模糊半闭映射或模糊连通映射)当且当仅f(X,T)→(Y,T~*)是紧映射(相应地,强完备映射,半闭映射,连通映射)。如果(Y,T)是T_2空间,则f:(X,ω(T))→(Y,ω(T~*))是模糊保紧映射当且仅当f:(X,T)→(Y,T~*)是保紧映射。  相似文献   

8.
设X和Y是希尔伯特空间,T:X→Y为一映射,证明了若T保1和另外一个实数,则T是一个线性变换,从而部分解决了Aleksandrov问题.  相似文献   

9.
没X、丫为拓扑空间,f:X~Y为映射。在什么条件下,f将X拓扑嵌入Y有过不少讨论,例如习知下列结果: 定理A(’):设X为紧空间,Y为Hausdroff空间,f:X~Y为1一1到上映射,则f为同胚映射。 定理B‘“’“卜设X、Y均为可分度量空间(特别或均为流形),f=X~Y为单(落”j。“‘落“‘)映射,L(f)为极限集,则 1)L(f)门f(X)=必不士f为拓扑嵌入; 2)L(f)Cf(X儿=之f(X)闭于Y。其他还有很多这类结果。 上述定理A与定理B是互不包含的,本文对一般拓扑空间定义了极限集,并建立了嵌入定理,它统一并推广了上列定理。先从定义开始。 定义1:设X、Y为拓扑空间,f:…  相似文献   

10.
令Y是一个有限集合X的非空子集,T(X)是X到自身的全变换半群。定义S(X,Y)是T(X)的一个子半群为S(X,Y)={α∈T(X):Yα■Y},即S(X,Y)包含T(X)中所有使得Y不变的映射。如果Y=X,则S(X,Y)=T(X)。本文主要给出了半群S(X,Y)的一类极大逆子半群的刻画。  相似文献   

11.
对于Hilbert空间上的2×2缺项算子矩阵和,我们刻画了它们所有补的谱的交集与并集,也给出了缺项算式矩阵具有补T=满足X和Y是紧算子使得σ(T)Ω的充分必要条件,其中Ω是复平面上包含零点的非空开集,且具有每个连通分支是单通的.这个结论也被应用于讨论连续(或离散)时间无限维线性系统的指数(或幂)稳定性问题.  相似文献   

12.
设X,Y为实赋范线性空间,C为Y中的闭凸点锥,C诱导了Y中的偏序,F:X→2~Y为集值映射。本文新引入了α-阶C-预凸集值映射的概念,并介绍了集值映射α-阶伴随切导数的定义,给出了集值映射在以上两者假设下的一个引理和两个定理。定理1是关于集值映射F的弱有效解的导数型的充分必要条件,即(■,■)为F在S上的弱有效解■D~aF(■,■) (η(x,(■)))∩-intC=Φ,■x∈S.定理2说明了集值映射,的弱有效解即为F的局部弱有效解。  相似文献   

13.
对于参数向量优化问题minK{f(ω,x)x∈G(ω)},其中f:W×X→Y是从赋范空间W和X的积到另一个赋范空间Y的Hadamard可微的单值映射,G:W→X是一个集值映射,K?Y是一个尖闭凸锥。应用集值映射的余切上图导数进行了灵敏度分析。  相似文献   

14.
A-XY~*的Moore-Penrose逆   总被引:1,自引:0,他引:1  
设A是一个C*-代数,对于任意的HilbertA-模K和H,令L(H,K)表示K到H上的可共轭算子全体,A是L(H,H)的一个可逆元,X,y是L(K,H)上的两个算子且满足X,Y,A-XT*都有闭值域.记X1=A-1X,Y1=(A-1)·Y,QX1=IH-X1X+1,QY1=IH-Y1Y+1,其中IH是H上的恒等算子,X+1,Y+1分别是X,Y的Moore-Pence逆.证明了Moore-Penrose逆(A-XY*)*=QX1A-1QY1的充分必要条件是:Y*1XY*1=Y*1,且XY*1X=X.  相似文献   

15.
T.Przymisin'ski 1980年在文[1]中提出研究N(X)(其中N(X)表示与正规空间X的乘积仍为正规的拓扑空间Y所组成的类)。对不同的拓扑空间X,给出类N(X的特征刻划是这个问题的一个重要方面. 本文给出当X为Ω-紧空间,Y为Ω-空间时(Ω-网空间,Ω-Frechet空间与Ω-邻域空间的总称)积空间X×Y为正规的充要条件。这几类空间的定义见文[2],主要结果  相似文献   

16.
半紧1-集压缩集值映射的不动点定理   总被引:2,自引:0,他引:2  
设E是实Banach空间,F是E中的锥,Ω是E中0点的邻域。1975年,Fitzpatrick 和Petryshyn 证明了如果映射T:ΩF=Ω(?)→2~F 是上半连续凝聚映射,且满足如下Leray-Shauder 边界条件:λx∈Tx, ■那么T 有不动点(这里只要求E 是Fréche■的)。1984年,张庆雍对半紧1-集压缩单值映射得到了类似的定理。本文的目的是在此基础上研究半紧1-集压缩集值映射的不动点定理。为此,在第2节里,在严格凸空间E 中,证明了k-集压缩集值映射的单值化映射仍是k-集压缩的。由此,在第3节里,把上述结果、[3-4]中其他一些不动点定理和Altman 在1957年的一个不动点定理推广到半紧1-集压缩集值映射。另外,还把郭大钧的锥拉伸和压缩不动点定理推广到集值全连续映射。  相似文献   

17.
设T是一个形式三角矩阵环,其中A,B是环且M是左B-右A-双模。利用环模理论和同调代数的方法,研究了形式三角矩阵环T上模的有限生成性、投射性以及FG-投射性等性质及其刻画。证明了右T-模(X⊕Y)_T、右B-模Y_B、右A-模X_A关于其子模f(Y■M)的商模之间具有一定的相关性,补充了形式三角矩阵环上模的基础理论。  相似文献   

18.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

19.
设X为偏序集(T_0A-空间),S(X)表示X上保序(连续)自映射作成的半群.本文通过讨论T_0A-空间上的S-关系来研究半群S(X)上的同余格,得到一些有趣的结果.  相似文献   

20.
设R是有单位元的交换环,A,B都是R上的酉代数,M是非零(A,B)-酉双模,且作为左A-模和右B-模都是忠实的.记T=(A M0B)为由A,B,M构成的三角代数,D为T的导子.给出T满足[D(X),D(Y)]=0的导子的结构,并证明了三角代数T的导子都不是强保交换的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号