首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J H?chtl  H G Zachau 《Nature》1983,302(5905):260-263
Functional kappa light chain genes are formed during B-lymphocyte differentiation by the joining of initially separate V and J gene segments. It has been suggested that the intervening DNA is deleted, however the recent reports of what appear to be the reciprocal products of V and J recombination (back-to-back conserved V and J flanking sequences, called f-fragments) in DNA from mature lymphocytes make a simple deletion model unlikely. An alternative scheme involving unequal sister chromatid exchange has been proposed, supported by the evidence that the f-fragments seem to have segregated from the chromosome carrying the reciprocal complete kappa light chain gene (this and other schemes are briefly reviewed in ref. 8). We report here the analysis of a mouse myeloma (MOPC 41), in which a productive (kappa+) and a non-productive (kappa-) rearrangement has occured, which may help to clarify the mechanism of V-J joining. The aberrant rearrangement has led to the joining of a J1 gene segment to a sequence unrelated to any V gene (L10), and which in the germ line is flanked by a sequence resembling a V region recombination signal sequence. In this case no segregation of the reciprocal recombination products (kappa-41 and f41), which is a required step in sister chromatid exchange models, has taken place. An inversion model provides the simplest explanation of this J rearrangement.  相似文献   

2.
3.
Human immunoglobulin light-chain genes become rearranged in an ordered fashion during pre-B-cell development such that rearrangement generally occurs in kappa genes before lambda genes (refs 1,2). This ordered process includes an unanticipated deletion of the constant kappa (C kappa) gene and kappa enhancer sequence which precedes lambda rearrangement, and the site of this deletional recombination was located 3' to the joining (J kappa) segments in 75% of cases studied. We have now characterized the recombinational element responsible for this event on three separate alleles and found them to be identical. This kappa-deleting element recombined site-specifically with a palindromic signal (CACAGTG) located in the J kappa-C kappa intron. All losses of C kappa genes in other human B cells were mediated by this determinant, including the 25% of instances when this element recombined with sequences 5' to J kappa. In contrast, the kappa-deleting element remained in its germline form on all successful kappa-producing alleles. Moreover, kappa loss is an evolutionarily conserved event, as the kappa-deleting element appears to be the human homologue of the murine RS sequence. Our results suggest that this element may help ensure isotypic and allelic exclusion of light chains and may be involved in the ordered use of human light-chain genes.  相似文献   

4.
F C Mills  L M Fisher  R Kuroda  A M Ford  H J Gould 《Nature》1983,306(5945):809-812
An immunoglobulin polypeptide chain is encoded by multiple gene segments that lie far apart in germ-line DNA and must be brought together to allow expression of an immunoglobulin gene active in B lymphocytes. For the immunoglobulin heavy chain genes, one of many variable (V) region genes becomes joined to one of several diversity (D) segments which are fused to one of several joining (J) segments lying 5' of the constant region (C) genes. Here we show that the rearranged mu genes of an IgM-producing human B-lymphocyte cell line exhibit pancreatic deoxyribonuclease (DNase I) hypersensitive sites in the JH-C mu intron that are absent in naked DNA or the chromatin of other differentiated cell types. DNA sequence analysis reveals that the major hypersensitive site maps to a conserved region of the JH-C mu intron recently shown to function as a tissue-specific enhancer of heavy-chain gene expression. A similar association of an enhancer-like element with a DNase I hypersensitive site has been reported for the mouse immunoglobulin light-chain J kappa-C kappa intron. These results implicate disruption of local chromatin structure in the mechanism of immunoglobulin enhancer function.  相似文献   

5.
6.
L Emorine  M Kuehl  L Weir  P Leder  E E Max 《Nature》1983,304(5925):447-449
Several functionally important genetic elements (such as the TATA box, mRNA splice sequences, poly(A) addition signal) were first detected as short segments of unexplained sequence homology within non-coding regions of different genes. A short region of unknown sequence in the intron between the human J kappa and C kappa immunoglobulin coding regions was found to be sufficiently homologous to the corresponding segment of the mouse gene to form stable heteroduplexes. Although no specific function has yet been definitely ascribed to this region (which we call the kappa intron conserved region, or KICR), some functional significance has been inferred from the findings that (1) activation of B lymphocytes induces a DNase hypersensitivity site in this region and (2) deletions including this region reduce expression of kappa genes introduced into lymphoid cells. To delineate the KICR more precisely and to test the generality of the sequence conservation in a third species, we have sequenced this region of the human and mouse genes and have examined the corresponding region of a recently cloned rabbit kappa gene. We find a segment of about 130 base pairs (bp) that shows striking conservation in all three species, demonstrating homology significantly higher than within the C kappa coding region itself. Two short sequences from the J kappa-C kappa intron that were noted by other investigators to be homologous to proposed 'enhancer' sequences both lie within the conserved region.  相似文献   

7.
H Schnell  M Steinmetz  H G Zachau  I Schechter 《Nature》1980,286(5769):170-173
Immunoglobulin light chain genes of the mouse are composed in germ-line DNA of four separate segments, the leader, V (variable), J (joining) and C (constant) segments. In immunocompetent cells a V and J gene segment are joined by a site-specific recombination event. In variants of the mouse myeloma MPC11 a so-called kappa (k) light chain fragment is expressed which consists of the MOPC321 leader peptide, joined to the kappa constant region peptide. Using the Southern blotting technique we found that the gene coding for the light chain fragment has apkparently been generated by an aberrant translocation of a V gene segment identical or very similar to the MOPC321 V gene segment into the large intervening sequence between the J and the C gene segments. The resulting deletion of the splice signals of the J segments could be the reason for the observed splicing between leader and C region sequences, a phenomenon which may be of general interest for the understanding of the splicing mechanism.  相似文献   

8.
H Sakano  K Hüppi  G Heinrich  S Tonegawa 《Nature》1979,280(5720):288-294
The entire nucleotide sequence of a 1.7-kilobase embryonic DNA fragment containing five joining (J) DNA segments for mouse immunoglobulin kappa chain gene has been determined. Each J DNA segment can encode amino acid residues 96--108. Comparison of one of the five J DNA sequences with those of an embryonic variable (V) gene and a complete kappa chain gene permitted localisation of a precise recombination site. The 5'-flanking regions of J DNA segments could form an inverted stem structure with the 3'-non-coding region of embryonic V genes. This hypothetical structure and gel-blotting analysis of total embryo and myeloma DNA suggest that the somatic recombination may be accompanied by excision of an entire DNA segment between a V gene and a J DNA segment. Antibody diversity may in part be generated by modulation of the precise recombination sites.  相似文献   

9.
Dispersed human immunoglobulin kappa light-chain genes   总被引:11,自引:0,他引:11  
The gene segments encoding the constant and variable regions of human immunoglobulin light chains of the kappa type (C kappa, V kappa) have been localized to chromosome 2. The distance between the C kappa and V kappa genes and the number of germline V kappa genes are unknown. As part of our work on the human V kappa locus, we have now mapped two solitary V kappa gene and a cluster of three V kappa genes to chromosomes 1, 15 and 22, respectively. The three genes that have been sequenced are nonprocessed pseudogenes, and the same may be true for the other two genes. This is the first time that V-gene segments have been found outside the C-gene-containing chromosomes. Our finding is relevant to current estimates of the size of the V kappa-gene repertoire. Furthermore, the dispersed gene regions have some unusual characteristics which may help to clarify the mechanism of dispersion.  相似文献   

10.
11.
S Lewis  A Gifford  D Baltimore 《Nature》1984,308(5958):425-428
V kappa to J kappa recombination occurred within a DNA construct introduced into cells in the form of a defective retrovirus. Analysis of one recombinant demonstrated that V kappa-J kappa joining can occur via inversion with a net loss of a few base pairs.  相似文献   

12.
Immunoglobulin heavy-chain switching in pre-B leukaemias   总被引:3,自引:0,他引:3  
H Kubagawa  M Mayumi  W M Crist  M D Cooper 《Nature》1983,301(5898):340-342
  相似文献   

13.
S Fujimoto  H Yamagishi 《Nature》1987,327(6119):242-243
The genes for the T-cell receptor, like the immunoglobulin genes, are rearranged as DNA. The mechanism of this rearrangement is not clear; unequal crossover between chromosomes and the looping-out and excision of the excess DNA have both been suggested. We isolated small polydisperse circular (spc) DNAs from mouse thymocytes and cloned them into a phage vector. Of the 56 clones we analysed, nine contained sequences homologous to T-cell receptor alpha-chain joining (J alpha) segments. We have characterized one of these clones; it contains one J alpha segment, and the product out of the recombination of a variable region of the alpha-chain gene (V alpha) with a J alpha gene segment. This is the first demonstration of the presence in extrachromosomal DNA of a reciprocal recombination product of any rearranging immunoglobulin or T-cell receptor gene. The finding verifies that V alpha-J alpha joining can occur by the looping-out and excision of chromosomal DNA.  相似文献   

14.
The joining of V and J gene segments creates antibody diversity   总被引:30,自引:0,他引:30  
M Weigert  R Perry  D Kelley  T Hunkapiller  J Schilling  L Hood 《Nature》1980,283(5746):497-499
The variable regions of mouse kappa (kappa) chains are coded for by multiple variable (V) gene segments and multiple joining (J) gene segments. The V kappa gene segments code for residues 1 to 95; the J kappa gene segments code for residues 96 to 108 (refs 1-3). This gene organisation is similar to that encoding the V lambda regions. Diversity in V kappa regions arises from several sources: (1) there are multiple germ-line V kappa gene segments and J kappa gene segments; (2) combinatorial joining of V kappa gene segments with different germline J kappa gene segments; and possibly, (3) somatic point mutation, as postulated for V lambda gene segments. Also, from a comparison of the number of germ-line J kappa gene segments and amino acid sequences, it has been suggested that J kappa region sequences may be determined by the way V kappa and J kappa gene segments are joined. This report supports this model by directly associating various J kappa sequences with given J kappa gene segments.  相似文献   

15.
The creation of a functional antibody gene requires the precise recombination of gene segments initially separated on the chromosome. Frequently errors occur in the process, resulting in the formation of a non-functional gene. The non-functional genes can be generated by incomplete rearrangements, frameshifts, or the use of pseudo V or J joining segments. It is likely that these aberrant rearrangements arise by the same mechanism as is used in generating functional genes, a process which we have suggested may involve unequal sister chromatid exchange. Aberrant rearrangements of immunoglobulin genes occur in normal lymphocytes and play a major part in allelic exclusion. However, it has recently been suggested that aberrant rearrangements involving immunoglobulin and non-immunoglobulin genes may be involved in tumorigenesis. This suggestion has been stimulated by the frequent occurrence of translocations involving chromosomes known to carry immunoglobulin genes in B-cell malignancies. The rearrangement of non-immunoglobulin DNA to the heavy-chain locus has recently been reported. Some aberrant rearrangements of the kappa locus appear to be due to rearrangements to sites that do not include the conventional sequence for V gene segment joining. Here we describe an aberrant kappa rearrangement that has led to the joining of DNA from chromosomes 15, 6 and 12, and so appears to be the result of chromosomal translocations or transpositions. As 15/6 or 15/12 translocations have frequently been found in mouse plasmacytomas (as have analogous translocations in human lymphocyte tumours) this aberrant kappa rearrangement may be unique to the plasmacytoma from which it was isolated.  相似文献   

16.
Y Yoshikai  S P Clark  S Taylor  U Sohn  B I Wilson  M D Minden  T W Mak 《Nature》1985,316(6031):837-840
An essential property of the immune system is its ability to generate great diversity in antibody and T-cell immune responses. The genetic and molecular mechanisms responsible for the generation of antibody diversity have been investigated during the past several years. The gene for the variable (V) region, which determines antigen specificity, is assembled when one member of each of the dispersed clusters of V gene segments, diversity (D) elements (for heavy chains only) and joining (J) segments are fused by DNA rearrangement. The cloning of the beta-chain of the T-cell antigen receptor revealed that the organization of the beta-chain locus, which is similar to that of immunoglobulin genes, is also composed of noncontiguous segments of V, D, J and constant (C) region genes. The structure of the alpha-chain seems to consist of a V and a C domain connected by a J segment. We report here that the human T-cell receptor alpha-chain gene consists of a number of noncontiguous V and J gene segments and a C region gene. The V region gene segment is interrupted by a single intron, whereas the C region contains four exons. The J segments, situated 5' of the C region gene, are dispersed over a distance of at least 35 kilobases (kb). Signal sequences, which are presumably involved in DNA recombination, are found next to the V and J gene segments.  相似文献   

17.
Somatic variants of murine immunoglobulin lambda light chains   总被引:26,自引:0,他引:26  
Studies of the murine lambda light chains produced by myeloma cells provided the first evidence for somatic point mutation of germ-line variable (V) region genes. An examination of the variable regions of 19 lambda 1 chains revealed seven which differed from a common sequence by one to three amino acid substitutions. Subsequently, one of these presumed somatic variants of the single lambda 1 V gene was characterized by DNA sequence analysis of the rearranged functional gene. The predicted DNA sequence alteration was observed and no silent mutation was evident. These studies of lambda chain variants suggested that the hypervariable, complementarity-determining regions (CDRs) ht be a preferred site of somatic mutation because all seven characterized variants contained substitutions only in these regions. By contrast, comparisons of closely related kappa chain variable region amino acid sequences, and more recently VK and VH genes, have suggested that somatic mutation probably occurs in codons for both framework and CDR residues. To examine this apparent discrepancy between the sites of somatic mutations in lambda and kappa genes, we have determined the nucleotide sequence of two lambda 1 gene from hybridomas and a lambda 2 gene from a myeloma. These sequences demonstrate that somatic mutation in lambda genes can occur in both the framework and CDR residues.  相似文献   

18.
A Winoto  S Mjolsness  L Hood 《Nature》1985,316(6031):832-836
The vertebrate immune system uses two kinds of antigen-specific receptors, the immunoglobulin molecules of B cells and the antigen receptors of T cells. T-cell receptors are formed by a combination of two different polypeptide chains, alpha and beta (refs 1-3). Three related gene families are expressed in T cells, those encoding the T-cell receptor, alpha and beta, and a third, gamma (refs 4-6), whose function is unknown. Each of these polypeptide chains can be divided into variable (V) and constant (C) regions. The V beta regions are encoded by V beta, diversity (D beta) and joining (J beta) gene segments that rearrange in the differentiating T cell to generate V beta genes. The V gamma regions are encoded by V gamma, J gamma and, possibly, D gamma gene segments. Studies of alpha complementary DNA clones suggest that alpha-polypeptides have V alpha and C alpha regions and are encoded by V alpha and J alpha gene segments and a C alpha gene. Elsewhere in this issue we demonstrate that 18 of 19 J alpha sequences examined are distinct, indicating that the J alpha gene segment repertoire is much larger than those of the immunoglobulin (4-5) or beta (14) gene families. Here we report the germline structures of one V alpha and six J alpha mouse gene segments and demonstrate that the structures of the V alpha and J alpha gene segments and the alpha-recognition sequences for DNA rearrangement are similar to those of their immunoglobulin and beta-chain counterparts. We also show that the J alpha gene-segment organization is strikingly different from that of the other immunoglobulin and rearranging T-cell gene families. Eighteen J alpha gene segments map over 60 kilobases (kb) of DNA 5' to the C alpha gene.  相似文献   

19.
The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS. Vbeta segments are appended to DJbeta rearrangements, with little or no direct Vbeta to Jbeta joining, despite 12/23 compatibility of Vbeta 23-RSSs and Jbeta12-RSSs. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)beta locus containing only one Dbeta (Dbeta1) gene segment and one Jbeta (Jbeta1) gene cluster to show that the 5' Dbeta1 12-RSS, but not the Jbeta1 12-RSSs, targets rearrangement of a diverse Vbeta repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.  相似文献   

20.
J G Seidman  E E Max  P Leder 《Nature》1979,280(5721):370-375
The active gene for a kappa light chain is formed by a somatic recombination event that joins one of several hundred variable region genes to one of a series of recombination sites (J-segments) encoded close to the kappa constant region gene. The nucleotide sequences of cloned germ line and somatically recombined genes define the precise organisation of these genetic segments and the site and nature of the recombination event that joined them. Apart from somatic recombination, no further alteration of ther germ line sequence has occurred. The J-segment is of special interest as it encodes signals for both DNA and RNA splicing and provides a means of generating further immunoglobulin gene diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号