首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bibby TS  Nield J  Barber J 《Nature》2001,412(6848):743-745
Although iron is the fourth most abundant element in the Earth's crust, its concentration in the aquatic ecosystems-particularly the open oceans-is sufficiently low to limit photosynthetic activity and phytoplankton growth. Cyanobacteria, a major class of phytoplankton, respond to iron deficiency by expressing the 'iron-stress-induced' gene, isiA(ref. 3). The protein encoded by this gene has an amino-acid sequence that shows significant homology with one of the chlorophyll a-binding proteins (CP43) of photosystem II (PSII). The precise function of the CP43-like protein, here called CP43', has not been elucidated, although there have been many suggestions. Here we show that CP43' associates with photosystem I (PSI) to form a complex that consists of a ring of 18 CP43' molecules around a PSI trimer. This significantly increases the size of the light-harvesting system of PSI. The utilization of a PSII-like protein as an extra antenna for PSI emphasises the flexibility of cyanobacterial light-harvesting systems, and seems to be a strategy which compensates for the lowering of phycobilisome and PSI levels in response to iron deficiency.  相似文献   

2.
Cyanobacteria are abundant throughout most of the world's water bodies and contribute significantly to global primary productivity through oxygenic photosynthesis. This reaction is catalysed by two membrane-bound protein complexes, photosystem I (PSI) and photosystem II (PSII), which both contain chlorophyll-binding subunits functioning as an internal antenna. In addition, phycobilisomes act as peripheral antenna systems, but no additional light-harvesting systems have been found under normal growth conditions. Iron deficiency, which is often the limiting factor for cyanobacterial growth in aquatic ecosystems, leads to the induction of additional proteins such as IsiA (ref. 3). Although IsiA has been implicated in chlorophyll storage, energy absorption and protection against excessive light, its precise molecular function and association to other proteins is unknown. Here we report the purification of a specific PSI-IsiA supercomplex, which is abundant under conditions of iron limitation. Electron microscopy shows that this supercomplex consists of trimeric PSI surrounded by a closed ring of 18 IsiA proteins binding around 180 chlorophyll molecules. We provide a structural characterization of an additional chlorophyll-containing, membrane-integral antenna in a cyanobacterial photosystem.  相似文献   

3.
Lunde C  Jensen PE  Haldrup A  Knoetzel J  Scheller HV 《Nature》2000,408(6812):613-615
Photosynthesis in plants involves two photosystems responsible for converting light energy into redox processes. The photosystems, PSI and PSII, operate largely in series, and therefore their excitation must be balanced in order to optimize photosynthetic performance. When plants are exposed to illumination favouring either PSII or PSI they can redistribute excitation towards the light-limited photosystem. Long-term changes in illumination lead to changes in photosystem stoichiometry. In contrast, state transition is a dynamic mechanism that enables plants to respond rapidly to changes in illumination. When PSII is favoured (state 2), the redox conditions in the thylakoids change and result in activation of a protein kinase. The kinase phosphorylates the main light-harvesting complex (LHCII) and the mobile antenna complex is detached from PSII. It has not been clear if attachment of LHCII to PSI in state 2 is important in state transitions. Here we show that in the absence of a specific PSI subunit, PSI-H, LHCII cannot transfer energy to PSI, and state transitions are impaired.  相似文献   

4.
Bellafiore S  Barneche F  Peltier G  Rochaix JD 《Nature》2005,433(7028):892-895
Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI). Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.  相似文献   

5.
Phycobilisomes (PBSs) are the main accessory light-harvesting complexes in cyanobacteria and their movement between photosystems (PSs) affects cyclic and respiratory electron transport. However, it remains unclear whether the movement of PBSs between PSs also affects the transthylakoid proton gradient (ΔpH). We investigated the effect of PBS movement on ΔpH levels in a unicellular cyanobacterium Synechocystis sp. strain PCC 6803, using glycinebetaine to immobilize and couple PBSs to photosystem II (PSII) or photosystem I (PSI) by applying under far-red or green light, respectively. The immobilization of PBSs at PSII inhibited decreases in ΔpH, as reflected by the slow phase of millisecond-delayed light emission (ms-DLE) that occurs during the movement of PBSs from PSII to PSI. By contrast, the immobilization of PBSs at PSI inhibited the increase in ΔpH that occurs when PBSs move from PSI to PSII. Comparison of the changes in ΔpH and electron transport caused by the movement of PBSs between PSs indicated that the changes in ΔpH were most likely caused by respiratory electron transport. This will further improve our understanding of the physiological role of PBS movement in cyanobacteria.  相似文献   

6.
Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis. These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.  相似文献   

7.
Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover, whereas LHCII phosphorylation is associated with the relocation of LHCII and the redistribution of excitation energy (state transitions) between photosystems. In the long term, imbalances in energy distribution between photosystems are counteracted by adjusting photosystem stoichiometry. In the green alga Chlamydomonas and the plant Arabidopsis, state transitions require the orthologous protein kinases STT7 and STN7, respectively. Here we show that in Arabidopsis a second protein kinase, STN8, is required for the quantitative phosphorylation of PSII core proteins. However, PSII activity under high-intensity light is affected only slightly in stn8 mutants, and D1 turnover is indistinguishable from the wild type, implying that reversible protein phosphorylation is not essential for PSII repair. Acclimation to changes in light quality is defective in stn7 but not in stn8 mutants, indicating that short-term and long-term photosynthetic adaptations are coupled. Therefore the phosphorylation of LHCII, or of an unknown substrate of STN7, is also crucial for the control of photosynthetic gene expression.  相似文献   

8.
Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus MED4 and the T7-like cyanophage P-SSP7, during lytic infection, to gain insight into these co-evolutionary processes. Although most of the phage genome was linearly transcribed over the course of infection, four phage-encoded bacterial metabolism genes formed part of the same expression cluster, even though they are physically separated on the genome. These genes--encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd)--are transcribed together with phage DNA replication genes and seem to make up a functional unit involved in energy and deoxynucleotide production for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to use upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes.  相似文献   

9.
Tanaka M  Chien P  Naber N  Cooke R  Weissman JS 《Nature》2004,428(6980):323-328
A remarkable feature of prion biology is the strain phenomenon wherein prion particles apparently composed of the same protein lead to phenotypically distinct transmissible states. To reconcile the existence of strains with the 'protein-only' hypothesis of prion transmission, it has been proposed that a single protein can misfold into multiple distinct infectious forms, one for each different strain. Several studies have found correlations between strain phenotypes and conformations of prion particles; however, whether such differences cause or are simply a secondary manifestation of prion strains remains unclear, largely due to the difficulty of creating infectious material from pure protein. Here we report a high-efficiency protocol for infecting yeast with the [PSI+] prion using amyloids composed of a recombinant Sup35 fragment (Sup-NM). Using thermal stability and electron paramagnetic resonance spectroscopy, we demonstrate that Sup-NM amyloids formed at different temperatures adopt distinct, stably propagating conformations. Infection of yeast with these different amyloid conformations leads to different [PSI+] strains. These results establish that Sup-NM adopts an infectious conformation before entering the cell--fulfilling a key prediction of the prion hypothesis--and directly demonstrate that differences in the conformation of the infectious protein determine prion strain variation.  相似文献   

10.
以海滨锦葵为实验材料,研究不同低温处理对海滨锦葵光合作用的伤害,探求海滨锦葵对低温胁迫的敏感温度,以及低温弱光对海滨锦葵的伤害.结果表明:在低温胁迫下,海滨锦葵的净光合速率(Pn)、光系统II实际光化学效率(ФPSII)、最大光化学效率(Fv/Fm)显著下降,说明随着温度的降低,海滨锦葵光化学活性受到抑制,13℃是其低温胁迫下的临界温度.低温弱光(6℃、200μmol·m^-2s^-1)处理4h后Fv/Fm下降了2.5%,而光系统I活性(△I/I0)下降了18.5%,说明在低温弱光条件下,海滨锦葵光系统I受到的伤害高于光系统II;在恢复过程中,光系统II在8h基本完全恢复,而光系统I和净光合速率在48h后仍没有恢复到正常水平,说明PSI的恢复速率成了光合作用的主要限制因素.  相似文献   

11.
IntroductionPhotosystem II (PSII) is a large supramolecularpigment-protein complex found in the thylakoidmembranes of green plants,algae andcyanobacteria.Its main role is to drive light-induced electron transfer from water toplastoquinone with a concomitant production ofmolecular oxygen.PSII membranes consist of anouter antenna portion of light-harvestingchlorophyll (Chl) a/b binding complexes (LHCII)and a core fraction.The core fraction is composedof an inner antenna of membrane-bound …  相似文献   

12.
对4株红斑丹毒丝菌的16SrRNA基因和groEL基因进行测序及系统发育分析,探讨groEL基因序列分析法在丹毒丝菌属菌种分类鉴定中的应用.测序结果表明,4株红斑丹毒丝菌groEL基因长度为1 614bp,编码由537个氨基酸残基组成热休克蛋白HPS60,与红斑丹毒丝菌ATCC19414株和扁桃体丹毒丝菌ATCC43339株groEL基因的同源性分别为99%和86%,而16SrRNA基因长度为1 351bp,与红斑丹毒丝菌ATCC19414株和扁桃体丹毒丝菌ATCC43339株的同源性均为99%.系统发育分析结果表明,groEL基因比经典的16SrRNA基因序列分析分辨率高,可适用于红斑丹毒丝菌和扁桃体丹毒丝菌的分类鉴定.  相似文献   

13.
Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.  相似文献   

14.
该文采用Illumina 高通量测序技术对地芽孢杆菌(Geobacillus sp. YHL)进行全基因组测序,使用Velet软件进行组装,利用Glimmer软件对菌株进行基因预测,得到的蛋白质通过与COG、KEGG等数据库进行比对来获得相应的注释信息.利用多种绘图工具对注释信息进行汇总及分析,获得了COG、KEGG等多种基础注释信息,对这些信息进行挖掘分析,研究结果发现:该菌株具有多种编码酶基因,包括糖苷水解酶、葡糖苷酶、木聚糖酶、淀粉酶、新普鲁兰酶、支链淀粉酶和脂肪酶,是一种嗜热的多酶编码菌,有一定的应用潜力.重点关注了在基因组中编码热应激蛋白基因,这些基因信息最终可以提供关于细菌的热适应机制的初步解释.  相似文献   

15.
通过大麦黄花叶病毒 (Ba YMV)抗性突破株系的核酸 RNA1全序列分析并与野生株系比较表明 ,抗性突破株系在病毒复制酶或转运蛋白区域 (6K2 )和核酸 RNA复制酶区域 (NIb)存在二个变异位点 .在这二个位点上抗性突破株系核酸分子编码的氨基酸分别为脯氨酸 (Pro)和苏氨酸 (Thr) ,而野生株系分别为缬氨酸(Val)和丙氨酸 (Ala) .对该两种酶蛋白质二级结构分析显示 ,氨基酸的变异可能导致了蛋白质的结构、功能与性质的改变 ,并且此种变异与抗 Ba YMV冬大麦中抗性基因 ym4的功能丧失有关 ,同时也说明了大麦品种田间致病性的差异与病毒核酸分子中的点突变关系密切 .  相似文献   

16.
Cyclic electron flow around photosystem I is essential for photosynthesis   总被引:4,自引:0,他引:4  
Photosynthesis provides at least two routes through which light energy can be used to generate a proton gradient across the thylakoid membrane of chloroplasts, which is subsequently used to synthesize ATP. In the first route, electrons released from water in photosystem II (PSII) are eventually transferred to NADP+ by way of photosystem I (PSI). This linear electron flow is driven by two photochemical reactions that function in series. The cytochrome b6f complex mediates electron transport between the two photosystems and generates the proton gradient (DeltapH). In the second route, driven solely by PSI, electrons can be recycled from either reduced ferredoxin or NADPH to plastoquinone, and subsequently to the cytochrome b6f complex. Such cyclic flow generates DeltapH and thus ATP without the accumulation of reduced species. Whereas linear flow from water to NADP+ is commonly used to explain the function of the light-dependent reactions of photosynthesis, the role of cyclic flow is less clear. In higher plants cyclic flow consists of two partially redundant pathways. Here we have constructed mutants in Arabidopsis thaliana in which both PSI cyclic pathways are impaired, and present evidence that cyclic flow is essential for efficient photosynthesis.  相似文献   

17.
Ben-Shem A  Frolow F  Nelson N 《Nature》2003,426(6967):630-635
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4 A resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.  相似文献   

18.
Phosphatidylcholine (PC) accounts for less than 1% of the total lipids in plant photosystem II (PSII) particles.In this experiment, PSII particles were reconstituted with PC to construct PSII-PC vesicles.The effect of PC on the steady state fluorescence of chlorophyll (Chl) in PSII particles was studied.The results show that PC significantly affected the fluorescence intensity, but did not obviously affect the fluorescence emission band peak position.PC also did not obviously affect the absorbance at 436 nm or the amide I band peak position in FT-IR spectroscopy of PSII particles.The results suggest that PC may affect the light energy transfer from the antenna chlorophyll molecules to the reaction center chlorophyll molecule (P680).  相似文献   

19.
IntroductionThephotosynthesislightreactionin plantsoccursinthethylakoidmembraneofthechloroplasts .Theproteincomplexesinthethylakoidmembranesaresupermolecularsystemsconsistingof proteins ,lipidsand pigmentswhichregulateandcontrolthelightenergyabsorption ,…  相似文献   

20.
Ecological studies on Prochlorococcus in China seas   总被引:1,自引:0,他引:1  
Prochlorococcus, a tiny oxygenic photosynthetic picoplankton with unique pigment composition, has been found to be ubiquitous and abundant in the world oceans, and has been recognized to be closely related to living resources and environmental issues. It has attracted the interest of marine biologists since its discovery, and field data on it over global oceans have accumulated rapidly in the past 10 years. In China, we have studied Prochlorococcus for 8 years, achieving a basic ecological understanding. The presence of Prochlorococcus in China seas, marginal seas of the west Pacific, was confirmed, and its distribution patterns were also brought to light. Prochlorococcus is very abundant in the South China Sea and the offshore regions of the East China Sea. It is seasonally present in the southeast part of the Yellow Sea and absent in the Bohai Sea. Temporal and spatial variations of the abundance of Prochlorococcus and their affecting factors, physiological and ecological characteristics of Prochlorococcus and their relationships to the other groups of picoplankton, and the importance of Prochlorococcus in total biomass and possible roles in living resources and environmental problems are discussed. In the future, isolation of different Prochlorococcus strains from the China seas and their physiological characteristics, genetic diversity, phylogenies and gene exploiture, etc. are important issues to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号