共查询到20条相似文献,搜索用时 15 毫秒
1.
息肉图像的分割在临床医疗和计算机辅助诊断技术等领域具有广泛的研究和应用价值,但是就目前的研究和应用需求来看,准确的息肉分割仍然是一项挑战. 针对内窥镜息肉图像中出现的息肉与黏膜边界不清晰、息肉的大小和形状差异较大等影响分割质量的问题,该文提出了一种基于U-Net改进的息肉图像分割算法(SBF-Net). 首先,在U-Net架构上引入了边界特征加强模块(BFEM),考虑到息肉边界和内部区域的关键线索,该模块利用编码器高层特征生成额外的边界补充信息,在解码器阶段进行融合,提升模型处理边界特征的能力. 其次,该模型的解码器(GFBD)采用了从上至下逐步融合特征的方式,将编码器阶段的输出特征经过局部加强(LE)模块之后再逐步融合边界特征,这种多尺度特征融合方式有效缓解了编码器和解码器之间的语义差距问题. 最后,在后处理阶段采用测试时数据增强(TTA)来进一步对分割结果进行细化. 该模型在CVC-300、CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS-LaribPolypDB等5个公开数据集上进行了对比实验和消融实验,实验结果证明了该文所改进方法的有效性,并在内窥镜息肉图像上表现出更好的分割性能和更强的稳定性,为息肉图像的处理和分析提供了新的参考. 相似文献
2.
针对传送带矿石图像中矿石粘连和边缘模糊造成的分割不准确问题,提出了一种基于U-Net和Res_UNet模型的传送带矿石图像分割方法.该方法首先将待分割图像经过灰度化、中值滤波和自适应直方图均衡化处理后,利用预训练的U-Net模型提取图像轮廓;然后,将图像轮廓二值化后,利用预训练的Res_UNet模型进行轮廓优化;最后,利用OpenCV得到分割结果.与基于形态学重建的分水岭算法和NUR法分别对10张测试图进行实验比较,结果表明,所提出的利用深度学习实现矿石轮廓检测和优化方法分割的结果更加准确,证明了其对传送带矿石图像分割的有效性. 相似文献
3.
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 相似文献
4.
医学图像分割是图像处理的重要环节,而细胞核分割结果是病理学家进行癌症分类和评级的重要依据,提高其分割的准确率一直是研究的热点。但由于同器官的不同细胞核存在形态可能不一样、细胞之间相互重叠、细胞边界不清楚等现象,导致细胞核图像难以准确分割。为提高相互接触和重叠细胞核分割的准确性和精确率,本研究提出一种新型的细胞核分割网络模型。该模型首先是对原始细胞图进行ZCA白化预处理,并基于经典的U-Net网络结构,通过U-Net和ResNet残差模块进行训练,使用Batch Normalization方法实现数据归一化处理,解决训练过程中梯度震荡问题。在MoNuSeg和ISBI2018Cell两个数据集上的实验结果表明,本研究所提出的模型的分割准确率较高,分割出的细胞没有出现细胞核大面积粘连的现象,细胞核轮廓更加清晰。本研究所提的分割网络基于经典的U-Net网络结构,通过构造ResNet残差模块实现对细胞核上下文特征的提取,同时在残差模块使用Batch Normalization使得梯度的传输更加便捷,减少了训练时间,而且在分割相互接触的细胞核时,具有精确定位和准确分割的能力,是一种有效的细胞核分割方法。 相似文献
5.
针对U-Net图像分割在下采样过程中会丢失过多信息且在上采样过程恢复效果不佳,从而导致图像分割精度降低的缺陷,提出了一种基于多层次自注意力机制的U-Net图像分割算法。该多层次自注意力机制在每一层上采样层前均嵌入自注意力模块,将上采样层的输入与缩放的原图拼接后处理成模板图,再与原本的输入信息融合后输出到上采样层。该算法不仅能通过拼接原图的自注意力模块进一步提供更多细节信息,还能利用上采样层的特征选择功能减少拼接原图带来的背景噪音,提高模型的分割精度。最后,在PASCAL VOC数据集和DeepFashion2数据集的基础上进行了人体分割和服装分割实验。实验结果 证明,该方法 能较好地改善图像的分割性能,从而证明了其正确性和有效性。 相似文献
6.
7.
为提高脑肿瘤磁共振图像分割精度,在U-Net图像分割方法基础上,提出了一种引入注意力机制的深度学习改进模型,利用全局上下文信息,使模型重点关注需要分割区域的特征,并抑制无关的特征,以此提高模型的分割精度,同时引入残差块来加速模型的训练.实验结果表明:提出的改进模型相比U-Net方法,脑肿瘤MRI图像的分割精度有了提高,... 相似文献
8.
为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu, PSPnet, Segnet, DeeplabV3+, U-Net进行对比,结果表明, 本文方法在各项指标上均优于其他分割方法. 相似文献
9.
基于CT血管造影(computed tomography angiography,CTA)图像的冠状动脉自动分割的挑战在于冠状动脉结构复杂、前背景分布严重不平衡,分割时易受冠状静脉和其他组织的干扰.提出了一种两阶段的冠状动脉分割算法,第一阶段采用具有密集特征提取和残差特征修正能力的3D DRU-Net进行分割,保证分割的召回率;在第二阶段提出2D双编码多特征融合U-Net(2D DEMFU-Net)进行细分割,先对原始图像和第一阶段分割结果分别进行特征提取,再采用密集跳跃连接融合两个分支上的多层次语义特征,进一步提高分割准确性.实验结果表明,提出的两阶段分割算法在CortArt2020数据集上的Dice相似系数、召回率和精确度分别优于3D U-Net网络3.83%,5.31%和2.23%. 相似文献
10.
针对肝脏CT图像分割任务中U-Net自下而上的特征融合方式忽略低级特征的问题,提出基于Attention-UNet的多尺度肝脏CT图像分割方法(MFFA-Net)。在Attention-UNet结构的基础上,通过加入多尺度特征提取的方法,以减少网络特征信息的丢失。在LiTS数据集上进行了大量实验。结果表明在不同评价指标下,提出的特征信息提取和融合的方法可以有效提高分割精度。 相似文献
11.
由于山体坡度、光照角度、传感器成像角度等因素,遥感图像中的山体阴影影响了冰川识别的精度.现有方法一般是先去除阴影再进行冰川识别,既繁琐又可能破坏图像的光谱信息.本文在U-Net框架中集成金字塔池化模块以增强多尺度特征提取能力,提出了一种U-PSP-Net结构的卷积神经网络,可以实现阴影区冰川识别.在自制的含阴影冰川数据集上进行验证,与PSP-Net、SegNet和U-Net的性能比较表明,提出的U-PSP-Net的平均像素精度为95.84%,平均交并比(IoU)为92.79%.与U-Net相比,分别提升了0.61%和0.92%;与PSP-Net和SegNet相比分别提高了1.41%、2.54%和2.85%、2.86%.以上结果证明了神经网络结构在含阴影遥感影像中识别冰川的可行性和有效性. 相似文献
12.
针对目前常见的U-Net网络结构以及现有的图像去噪算法在去除图像噪声时,处理后得到的图像较为模糊且图像的边缘纹理过于光滑缺乏真实性的问题,提出了一种改进的U-Net网络结构去噪算法。它由去噪模块以及边缘信息提取模块组成,首先,利用U-Net++中的跳跃连接应用到原始的U型去噪子网中,密集连接的U型去噪网络可以减少编码器与解码器特征映射之间的语义差距,还原出更清晰的图像。其次,基于VGG-16网络结构的边缘信息提取模块对去噪网络处理后的图像进行特征提取,同时反向优化U型去噪模块,还原出更真实的图像。实验表明,在常见的Set5、Set12、Kodak24和CBSD68数据集测试所提出的算法,在图像的客观评价指标上均优于目前具有代表性的去噪算法,同时图像的边缘细节和纹理特征更清晰真实,视觉效果上更好。 相似文献
13.
针对U-Net网络感受野受限以及信息丢失导致的分割精度低的问题,提出了一种基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割算法.首先,在U-Net网络中引入感受野模块(receptive field block,RFB)来增大网络的感受野,解决了网络由于感受野受限带来的分割精度低的问题.此外在网络中引入有效的通道注意模块(efficient channel attention,ECA)来增加网络对有用特征的响应,抑制网络中的冗余特征.使用BraTS(the brain tumor image segmentation challenge)提供的脑肿瘤MR图像数据对本文算法进行测试,用Dice相似性系数等指标进行评价,结果显示在完整肿瘤、核心肿瘤以及增强肿瘤的Dice值分别可达到0.86、0.86、0.79.与U-Net模型以及其他的网络相比得到了提高.实验结果表明,本文提出的算法能够有效提升脑肿瘤分割的精度,具有良好的分割性能. 相似文献
14.
提出一种以U-Net为基础,依据零件缺陷的特点对网络进行一系列改进的模型,以提升网络对零件缺陷的分割精度.首先在U-Net结构中的编码阶段,使用改进的残差网络Res2Net提高该阶段的特征提取能力;然后在网络编码器与解码器的中间部位增加空洞卷积,在不改变特征图尺寸的情况下增加感受野,降低误检率与漏检率;最后在U-Net的输出阶段与Mini U-Net进行结合,对原本的输出结果进行二次补丁,提高对微小缺陷的检测精度.实验结果表明,对MVTec数据集进行分割的F1-Score分数达到87.21%,时间为0.017 s,达到了良好的检测效果. 相似文献
15.
脑卒中具有极高致残率和致死率,研究脑卒中病变的自动识别和分割方法具有重要的临床意义。提出一种基于双向循环U-Net(BIRU-Net)模型的病灶分割方法。首先,引入循环神经网络结构,将改进的注意力卷积门递归单元(ACGRU)替代U-Net中的部分卷积层,使分割模型既适用于小规模标注的医学影像数据集,又具有长时记忆特性;其次,采用双路融合训练机制,将单一视面的正向、反向的切片数据同时输入BIRU-Net,并在模型前向传播过程实现双向特征融合,有效利用了切片序列的双向依赖特性。最后,将各单一视面的分割结果进行再融合,有效利用了数据的空间上下文信息。对于ATLAS数据集的实验结果表明,所提方法的DSC值达到了62.58%,与现阶段的其他方法相比,本文的方法能较为准确地分割出病灶区域。 相似文献
16.
为了提高青光眼检测的准确率,降低青光眼的危害,本文提出一种基于多任务学习的青光眼智能诊断方法,将U-Net网络和VGG16网络结合,U-Net网络和VGG16网络共用U-Net网络的编码器部分,通过U-Net网络得到杯盘比(cup-to-discratio,CDR),并且将CDR作为眼底图像的特征之一输入VGG16网络,实现眼底图像的青光眼分类。实验使用REFUGE挑战数据集进行验证,网络模型在训练后得到的工作特性曲线下面积为0.978 8,且视盘和视杯的分割准确率分别达到0.874 5和0.962 4,对比其他使用相同数据集的方法,本方法具有更高的青光眼分类准确率。 相似文献
17.
CT成像是检测新冠感染(COVID-19)病灶区域的重要手段之一,但需要专业的放射科医生判断且工作量较大。为了解决磨玻璃结节(GGO)以及肺部实变两种病变统一分割问题,在U-Net网络模型中加入改进的三重注意力模块,提高病灶特征的显著性,细化病灶的边缘特征,增加对小区域病灶的识别度,辅助医生判断。该方法构建的深度分割网络模型在COVID-19分割数据集中进行实验,得到的Sensitivity, Specificity, Dice, mIou分别为86.57%,99.33%,81.64%,88.23%。分割效果在这个模型中能得到更良好的体现。 相似文献
18.
由于数据集之间存在域偏移问题,基于深度学习的语义分割网络在不同数据集之间进行视盘视杯分割性能存在很大差异,这使得不同的医学站点之间进行精确的图像分析和诊断具有一定的挑战性。针对这一问题,提出了一种U-Net结合域对抗网络(domain adversarial via U-Net network, DAUNet)的无监督域适应视盘视杯联合分割方法,并在视盘视杯分割领域取得了不错的性能。首先,利用对抗思想结合目标数据先验特征信息生成与目标数据集相似的数据,预先调整网络参数;其次,通过对抗学习源域和目标域的域变特征,从而降低域偏移的影响,提高分割性能。在REFUGE、Drishti-GS和RIM-ONE-r3共3个数据集之间进行跨数据集的域适应实验和消融实验。实验结果表明,DAUNet网络在以REFUGE作为源域,RIM-ONE-r3作为目标域上视杯的Dice系数,视盘的Dice系数和CDR的绝对错误率分别为0.648 6、0.789 8、0.072 5,优于CADA的分割结果。在消融实验中,视盘分割和视杯分割在有对抗下分别优于无对抗8.00%、4.59%。提出的U型域对抗网络综合了U-Ne... 相似文献
19.
应新疆塔里木油田深层两大类复杂油藏项目的要求,采用多传感器联合的野外地质露头采集技术与多尺度数字露头构建技术,建立了基于多尺度-多信息三维数字露头的综合地质知识库,其中一项重要的工作是深度学习在岩性、缝洞等方面的自动识别与研究。基于无人机拍摄的裂缝图像分辨率高且复杂的特点,在图像预处理阶段,首先对原始图像进行了切割,并做了灰度化处理以降低计算量。采用在医学领域内识别图像效果显著的U-Net网络模型,同时在传统U-Net模型的跳跃连接阶段引入注意力机制以提高目标特征的关注能力,带来模型性能的提升。使用处理过的真实岩石裂缝图像,完成了模型的训练和测试。实验结果表明:改进之后的网络模型裂缝识别效果良好,精确率可以达到88%,较原始网络提高了2.37%,损失在0.110左右,F1分数能够达到85以上。 相似文献
20.
为了从心脏MR图像中分割出左心室,提出了一种基于U-Net网络的图割后处理算法.先训练U-Net网络分割网络得到概率图,接着采用图割算法进行后处理.为了减少图割算法运行时间,采用图像形态学操作去除无需后处理区域,只保留分割结果的边缘区域进行图割优化.采用Dice系数和召回率这两种评价指标,在Sunnybrook数据集上... 相似文献