共查询到19条相似文献,搜索用时 62 毫秒
1.
为了获取老年人的精神状态从而更全面地了解老年人的身体状况,提出了基于多通道卷积注意力机制的精神状态识别方法。首先,对多种生理信号进行数据预处理,将不同采样频率的传感器数据进行重采样操作,保证数据长度一致。其次,根据输入信号的结构特征以及信号的长度设计对应卷积模块,使用4个不同大小的一维卷积核同时对信号进行特征提取,以增强模型的特征提取能力。再次,将卷积结果进行拼接,对拼接结果进行最大池化操作增加模型的感受野,在提取局部特征信号的同时实现信号间的长距离特征表达。最后,实验结果表明,总体分类准确率为99.75%,所提方法优于对比方法。 相似文献
2.
[目的]针对肺炎识别案例中存在的数据集数量分配不均、数量少、类别间差异小等问题,提出一种基于卷积神经网络判别模块的肺炎识别方法.[方法]首先,将网络骨干设定为预训练的121层DenseNet网络,并冻结相关参数,以迁移学习的方式来解决数据量少的问题,再将网络的中间层定义一组额外的卷积滤波器,通过学习这组滤波器,可以捕获... 相似文献
3.
糖尿病视网膜病变是糖尿病并发症最常见的疾病之一。由于视网膜病变病灶具有特征复杂、特征差异小的特点,导致传统深度学习网络对视网膜病变等级识别存在错误率高、鲁棒性差等问题。针对上述问题,提出了一种MA-DRNet模型进行优化:(1)提出了一种多级特征残差块,提取不同分辨率多尺度特征、扩大模型感受野,加强模型对于小尺度病灶的学习能力以及模型对尺度的鲁棒性;(2)改进一种全局通道联合注意力机制,实现像素长距离依赖关系捕获和通道注意力,提升模型对复杂病灶表征效果;(3)设计集成难例挖掘训练方法,巩固对于困难样本的学习,融入集成的思想提升模型对易错样本的关注度。在Kaggle和Messidor两个公开视网膜数据集进行模型训练和测试,本文模型特异性为99.02%,敏感性为98.26%,准确率为98.87%,各指标均优于目前同类算法。大量的实验表明,MA-DRNet有效的解决了视网膜病变识别存在的问题,实现了视网膜病变等级的高精度辅助诊断。 相似文献
4.
5.
6.
在复杂交通场景中,公安和交管部门对车型识别的实时性和精度提出了更高要求。针对当前假牌、套牌、无牌车辆处理占用大量警力、检索效率低下、非智能化等一系列问题,提出了一种基于GoogleNet深度卷积神经网络的车型精细识别方法,设计了合理的卷积神经网络滤波器大小和数目,优选了激活函数和车型识别分类器,构建了一个新的卷积神经网络轿车车型精细识别模型框架。实验结果表明,在车型精细识别测试中,所提出模型的识别率达到了97%,较原始GoogleNet模型有较大提升,而且,新模型有效地减少了训练参数的数量,降低了模型的存储空间。车型精细识别技术可应用于智能交通管理领域,具有重要的理论研究价值与实践意义。 相似文献
7.
为了解决脑电信号特征提取能力不足导致的分类准确率不高的问题,提出一种全新的混合神经网络模型(EEG-MSTNet模型),实现脑电信号的时-频-空域特征提取和识别.首先,EEG-MSTNet模型采用一种适合脑电信号特点的多尺度卷积,提取4组不同大小卷积核的特征,并拼接在一起,从而增强对原始脑电信号的时频域提取能力.其次,通过通道注意力机制进一步提取信号的空间特征和高维时域特征,最终用于脑电信号识别.EEG-MSTNet模型在BCI Competition Ⅳ Dataset 2a 数据集上进行测试,结果表明:EEG-MSTNet模型的每个模块都对分类准确率的提升做出了贡献,最高分类准确率为95.83%,平均准确率为83.52%,明显优于其他模型. 相似文献
8.
为了更好地提取并融合人体骨架中的时序特征和空间特征,文章构建了融合时空域注意力模块的多流卷积神经网络(AE-MCN):针对目前大多数方法在建模骨架序列相关性时因忽略了人体运动特性而没有对运动尺度进行适当建模的问题,引入了自适应选取运动尺度模块,从原尺度动作特征中自适应地提取关键时序特征;为了更好地对特征进行时间维度和空间维度上的建模,设计了融合时空域的注意力模块,通过对高维时空特征进行权重分配,进而帮助网络提取更有效的动作信息。最后,在3个常用的人体动作识别数据集(NTU60、JHMDB和UT-Kinect)上进行了对比实验,以验证AE-MCN网络的有效性。实验结果表明:与ST-GCN、SR-TSL等网络相比,AE-MCN网络都取得了更好的识别效果,证明AE-MCN网络可以对动作信息进行有效的提取与建模,从而获得较好的动作识别性能。 相似文献
9.
煤矸石识别是煤炭智能化产业中的重要环节,而基于机器视觉的煤矸石识别技术是当前的研究重点和热点,但现有技术存在着一些问题和不足。首先揭示了外界因素对煤矸石图像采集的影响,其次阐述了煤矸石图像处理中的常用方法并指出了各方法存在的不足之处,最后总结了当前基于机器学习的煤矸石相关识别分类技术。基于上述研究成果,提出了当前煤矸石机器视觉识别方法的进一步研究方向,即:构建高质量的煤矸石数据集、研究高效的图像分割方法、选择最具代表性的煤矸石特征、优化深度学习网络模型结构。 相似文献
10.
针对基于卷积神经网络的行人重识别算法全局信息建模不足的问题,分析了卷积操作的局限性,提出一种基于Transformer改进的全局-局部两分支行人重识别算法.首先利用相对位置编码改进多头自注意力机制,并将其嵌入到Resnet50骨干网络中.之后在全局分支中对图像进行空间几何划分并利用Transformer的全局感受野增强抽象特征的提取能力;在局部分支中对Layer_3输出进行降维监督,利用多尺度池化获得更丰富的局部特征.实验结果表明,该算法在公开数据集Market-1501和DukeMTMC-reID上的mAP/Rank-1分别达到了93.45%/95.61%和88.79%/90.35%,相对于单纯基于卷积神经网络的算法,本文算法达到更高的精度. 相似文献
11.
表面微小缺陷具有尺度小、对比度低和样本数量不足等特点,导致基于深度学习的缺陷检测精度低和漏检率高,故基于视觉的表面微小缺陷检测一直是一项具有挑战性的工作.研究发现,增强网络模型特征提取能力、减少特征丢失或梯度消失以及采用注意力机制关注图像中重要的区域有利于提高表面微小缺陷的检测精度.该文系统分析了能够有效提高表面微小缺陷检测精度的ResNet、DenseNet、FPN等网络结构,总结了注意力机制在表面微小缺陷检测中的应用,分析了生成对抗网络(generative adversarial networks,GAN)针对表面微小缺陷样本不足问题的解决方案和具体应用,全面总结了微小表面缺陷检测中有效的网络结构和解决机制. 相似文献
12.
近年来,注意力机制在图像分类、目标检测和语义分割等领域取得了巨大成功,但现有的注意力机制大多只能在通道或空间维度上实现特征融合,这极大限制了其在通道和空间维度上变化的灵活性,导致无法充分利用特征信息。为此,文中提出一种基于特征相似性和特征规范化的、可同时利用特征图各维度信息的卷积神经网络注意力模块FSNAM。该模块由特征相似性模块(FSM)和特征规范化模块(FNM)两部分组成,FSM利用输入特征图的通道特征信息和局部空间特征信息生成一个二维的特征相似性权重图;FNM利用输入特征图的全局空间特征信息生成一个三维的特征规范化权重图;两个模块生成的权重图融合在一起,生成一个三维的注意力权重图,以此实现通道特征信息和空间特征信息的融合。为证明FSNAM的可行性和有效性,进行了消融实验,结果表明:在图像分类任务方面,FSNAM模块对分类网络在CIFAR数据集上的性能提升明显优于其他主流注意力模块;在目标检测任务方面,使用FSNAM模块的目标检测网络对VOC数据集中的小目标和中等大小目标的检测准确率分别提高了3.9和1.2个百分点;在语义分割任务方面,使用FSNAM模块可以提高HRNet模型的性能,在SBD数据集上模型的平均像素准确率提高了0.58个百分点。 相似文献
13.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部\"三庭五眼\"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。 相似文献
14.
生成对抗网络(generative adversarial networks, GANs)技术正逐步成为合成图像的主流方法,合成的人脸图像对社会稳定和国家安全具有潜在的风险隐患,因此识别GAN生成的人脸已成为一个重要问题。为解决卷积神经网络(convolutional neural networks, CNN)在训练过程中无法获取图像全局表示的问题,提出了一种CNN-Transformer双流网络检测框架,在最大限度提取局部特征的同时,进一步保留图像的全局信息。首先,在CNN分支流中引入空间注意力和通道注意力,关注图像关键信息并提取局部特征;其次,利用Transformer分支流提取图像的全局信息;最后,中间利用桥接双分支的MixBlock交互模块分别将两者提取的局部特征和全局信息融合在一起。实验结果表明:与现有两种方法相比,本文所提方法在公共伪脸数据集上的分类检测精度分别提升了5.42%和1.95%,并且在后处理的图像上表现出一定的鲁棒性。 相似文献
15.
针对目前MRI脑肿瘤分割中的无监督特征提取方法无法适应脑肿瘤图像的差异性,提出一种基于多模态3D卷积神经网络(CNNs)特征提取的MRI脑肿瘤分割方法。将2D的多模态MRI图像组合成3D原始特征,通过3D-CNNs提取特征,更有利于提取各模态之间的差异信息,去除各模态之间的冗余干扰信息,同时缩小原始特征邻域大小,以适应同一病人不同图像层肿瘤大小的差异变化,进一步提高MRI脑肿瘤的分割精度。实验结果证明,能适应不同病人各模态之间的差异性和多变性,以提高脑肿瘤的分割精度。 相似文献
16.
针对小目标物体检测精度差的问题,同时不以牺牲速度为代价,本文提出了一种基于全局注意力的多级特征融合目标检测算法。算法首先由卷积神经网络生成多尺度的特征图,然后采用多级特征融合的方法,将浅层和深层特征图的语义信息相结合,提高特征图的表达能力,接着引入全局注意力模块,对特征图上下文信息进行建模,并捕获通道之间的依赖关系来选择性地增强重要的通道特征。此外,在多任务损失函数的基础上增加一项额外的惩罚项来平衡正负样本。最后经过分类回归、迭代训练和过滤重复边框得到最终检测模型。对所提算法在PASCAL VOC数据集上进行了训练和测试,结果表明该算法能有效地提升小目标物体检测效果,并较好地平衡了检测精度与速度之间的关系。 相似文献
17.
为解决低光照条件下已有图像分割模型性能降低的问题,提出了一个基于RGB和深度图特征融合网络的MDF-ANet图像分割方法.为了对原始数据进行充分的特征学习,采用两路特征提取网络分别提取RGB和深度图特征;设计了一个特征融合模块,分别将两路特征提取网络对应尺度下的输出特征图通过融合模块进行融合,并作为RGB网络下一层的输入,通过不受光照条件影响的深度图来辅助RGB的特征提取;将各个尺度输出的特征图输入多尺度上采样融合模块,进行不同感受野间的信息互补,再上采样至原始输入图像大小,得到分割图像.在Cityscapes及其转化后的低光照图像上进行了一系列实验,在其验证集上取得了62.44%的均交并比(mean intersection over union,mIOU),相比只使用RGB输入的模型,性能提高了9.1%,达到了在低光照条件下提高图像分割性能的目的. 相似文献
18.
为了提高推荐算法的推荐性能,在序列建模过程中,针对循环神经网络(recurrent neural network,RNN)无法并行运算导致建模速度与准确度较低,以及在偏好预测过程中对用户不同阶段偏好没有动态融合的问题,提出了一种基于混合神经网络的序列推荐算法.在算法模型的用户交互序列建模阶段,考虑到用户近期偏好变化频繁... 相似文献
19.
行为识别的过程很大程度上可以看作特征提取与分类器相结合,故特征提取方法的优劣直接影响最终识
别效果。与静态图像物体识别相比,视频中人体行为识别特征提取更易受到动态背景、采集设备运动、视角和
光照等因素影响人体,从而对研究人员的工作提出了很大挑战。为此,综合了近几年对行为识别特征提取系
统分类和不同类型行为识别特征提取方法以及常用行为识别数据库等领域研究的最新进展,探讨了目前研究
难点,阐述了与未来可能的研究发展方向。 相似文献