共查询到20条相似文献,搜索用时 93 毫秒
1.
为了获取老年人的精神状态从而更全面地了解老年人的身体状况,提出了基于多通道卷积注意力机制的精神状态识别方法。首先,对多种生理信号进行数据预处理,将不同采样频率的传感器数据进行重采样操作,保证数据长度一致。其次,根据输入信号的结构特征以及信号的长度设计对应卷积模块,使用4个不同大小的一维卷积核同时对信号进行特征提取,以增强模型的特征提取能力。再次,将卷积结果进行拼接,对拼接结果进行最大池化操作增加模型的感受野,在提取局部特征信号的同时实现信号间的长距离特征表达。最后,实验结果表明,总体分类准确率为99.75%,所提方法优于对比方法。 相似文献
2.
[目的]针对肺炎识别案例中存在的数据集数量分配不均、数量少、类别间差异小等问题,提出一种基于卷积神经网络判别模块的肺炎识别方法.[方法]首先,将网络骨干设定为预训练的121层DenseNet网络,并冻结相关参数,以迁移学习的方式来解决数据量少的问题,再将网络的中间层定义一组额外的卷积滤波器,通过学习这组滤波器,可以捕获... 相似文献
3.
糖尿病视网膜病变是糖尿病并发症最常见的疾病之一。由于视网膜病变病灶具有特征复杂、特征差异小的特点,导致传统深度学习网络对视网膜病变等级识别存在错误率高、鲁棒性差等问题。针对上述问题,提出了一种MA-DRNet模型进行优化:(1)提出了一种多级特征残差块,提取不同分辨率多尺度特征、扩大模型感受野,加强模型对于小尺度病灶的学习能力以及模型对尺度的鲁棒性;(2)改进一种全局通道联合注意力机制,实现像素长距离依赖关系捕获和通道注意力,提升模型对复杂病灶表征效果;(3)设计集成难例挖掘训练方法,巩固对于困难样本的学习,融入集成的思想提升模型对易错样本的关注度。在Kaggle和Messidor两个公开视网膜数据集进行模型训练和测试,本文模型特异性为99.02%,敏感性为98.26%,准确率为98.87%,各指标均优于目前同类算法。大量的实验表明,MA-DRNet有效的解决了视网膜病变识别存在的问题,实现了视网膜病变等级的高精度辅助诊断。 相似文献
4.
5.
6.
在复杂交通场景中,公安和交管部门对车型识别的实时性和精度提出了更高要求。针对当前假牌、套牌、无牌车辆处理占用大量警力、检索效率低下、非智能化等一系列问题,提出了一种基于GoogleNet深度卷积神经网络的车型精细识别方法,设计了合理的卷积神经网络滤波器大小和数目,优选了激活函数和车型识别分类器,构建了一个新的卷积神经网络轿车车型精细识别模型框架。实验结果表明,在车型精细识别测试中,所提出模型的识别率达到了97%,较原始GoogleNet模型有较大提升,而且,新模型有效地减少了训练参数的数量,降低了模型的存储空间。车型精细识别技术可应用于智能交通管理领域,具有重要的理论研究价值与实践意义。 相似文献
7.
为了更好地提取并融合人体骨架中的时序特征和空间特征,文章构建了融合时空域注意力模块的多流卷积神经网络(AE-MCN):针对目前大多数方法在建模骨架序列相关性时因忽略了人体运动特性而没有对运动尺度进行适当建模的问题,引入了自适应选取运动尺度模块,从原尺度动作特征中自适应地提取关键时序特征;为了更好地对特征进行时间维度和空间维度上的建模,设计了融合时空域的注意力模块,通过对高维时空特征进行权重分配,进而帮助网络提取更有效的动作信息。最后,在3个常用的人体动作识别数据集(NTU60、JHMDB和UT-Kinect)上进行了对比实验,以验证AE-MCN网络的有效性。实验结果表明:与ST-GCN、SR-TSL等网络相比,AE-MCN网络都取得了更好的识别效果,证明AE-MCN网络可以对动作信息进行有效的提取与建模,从而获得较好的动作识别性能。 相似文献
8.
针对基于卷积神经网络的行人重识别算法全局信息建模不足的问题,分析了卷积操作的局限性,提出一种基于Transformer改进的全局-局部两分支行人重识别算法.首先利用相对位置编码改进多头自注意力机制,并将其嵌入到Resnet50骨干网络中.之后在全局分支中对图像进行空间几何划分并利用Transformer的全局感受野增强抽象特征的提取能力;在局部分支中对Layer_3输出进行降维监督,利用多尺度池化获得更丰富的局部特征.实验结果表明,该算法在公开数据集Market-1501和DukeMTMC-reID上的mAP/Rank-1分别达到了93.45%/95.61%和88.79%/90.35%,相对于单纯基于卷积神经网络的算法,本文算法达到更高的精度. 相似文献
9.
提出了一种新颖的语音情感识别结构,从声音文件中提取梅尔频率倒谱系数(Melscale frequency cepstral coefficients,MFCCs)、线性预测倒谱系数(linear predictive cepstral coefficients,LPCCs)、色度图、梅尔尺度频谱图、Tonnetz表示和频谱对比度特征,并将其作为一维卷积神经网络(convolutional neural network,CNN)的输入.构建由一维卷积层、Dropout层、批标准化层、权重池化层、全连接层和激活层组成的网络,并使用Ryerson情感说话/歌唱视听(Ryerson audio-visual database of emotional speech and song,RAVDESS)数据集、柏林语音数据集(Berlin emotional database,EMO-DB)、交互式情绪二元运动捕捉(interactive emotional dyadic motion capture,IEMOCAP)数据集这3个数据集的样本来识别情感.为提高分类精度,利用增量方法修改初始模型.为... 相似文献
10.
针对三维卷积神经网络在特征提取过程中,极易出现神经元被抑制直接失去活性的现象,提出一种改进的人体动作识别模型,在卷积过程中使用Leaky ReLU激活函数,对静默神经元恢复更新利用,深层次摄取图像之间的时间和空间信息,丰富神经网络特征结构;并且结合批量归一化处理,使信息素点规则化重新分布,有助于高效完成特征提取,提高收敛速度。在UCF-50公共数据集上的实验结果表明,该模型的准确率达到91.25%,相比其他方法至少提高6%,验证了模型的有效性。 相似文献
11.
基于LVQ神经网络的植物种类识别 总被引:2,自引:0,他引:2
提出一种基于学习矢量量化(LVQ)神经网络的计算机植物种类识别新方法. 使用2-D不变矩、 多尺度2-D Gabor滤波器等多种方法分别提取了叶片的几何特征和纹理特征, 应用LVQ神经网络识别植物种类. 实验结果表明, 该方法对植物种类的识别效率较高. 相似文献
12.
苹果果梗和缺陷的识别技术研究 总被引:13,自引:6,他引:13
为解决苹果自动检测和分选中苹果果梗和缺陷的识别这一瓶颈问题,提出基于HIS颜色模型下亮度,的分布特性,从信号处理的角度确定苹果的果梗和缺陷区域.再提取区域纹理特征,构筑模拟退火神经网络作为模式分类器,区分果梗和缺陷.试验结果表明用该方法识别准确率接近90%.为苹果的在线检测和分级打下了良好的基础. 相似文献
13.
卷积神经网络的研究进展综述 总被引:3,自引:0,他引:3
深度学习(deep learning,DL)强大的建模和表征能力很好地解决了特征表达能力不足和维数灾难等模式识别方向的关键问题,受到各国学者的广泛关注.而仿生物视觉系统的卷积神经网络(convolutional neural network,CNN)是DL中最先成功的案例,其局部感受野、权值共享和降采样三个特点使之成为智能机器视觉领域的研究热点.对此,本文综述CNN最新研究成果,介绍其发展历程、最新理论模型及其在语音、图像和视频中的应用,并对CNN未来的发展潜力和发展方向进行了展望和总结. 相似文献
14.
针对计算机生成图像(Computer Generated images, CG)与真实照片(Photograpgh, PG)识别率不高的问题,该文提出了一种改进的卷积神经网络方法来实现CG与PG的识别.该方法首先对识别问题进行卷积神经网络二分类建模,并选择VGG-19网络结构作为基础,建立不同的模型.该方法创新性地引入迁移学习,节省训练时间和大量计算资源,最后使用softmax分类器进行分类.实验结果表明,该文方法对PG图像的识别准确率达到92%.与其他方法比较,该文方法识别准确率最高,说明该文方法具有可行性与有效性. 相似文献
15.
16.
生成对抗网络(generative adversarial networks, GANs)技术正逐步成为合成图像的主流方法,合成的人脸图像对社会稳定和国家安全具有潜在的风险隐患,因此识别GAN生成的人脸已成为一个重要问题。为解决卷积神经网络(convolutional neural networks, CNN)在训练过程中无法获取图像全局表示的问题,提出了一种CNN-Transformer双流网络检测框架,在最大限度提取局部特征的同时,进一步保留图像的全局信息。首先,在CNN分支流中引入空间注意力和通道注意力,关注图像关键信息并提取局部特征;其次,利用Transformer分支流提取图像的全局信息;最后,中间利用桥接双分支的MixBlock交互模块分别将两者提取的局部特征和全局信息融合在一起。实验结果表明:与现有两种方法相比,本文所提方法在公共伪脸数据集上的分类检测精度分别提升了5.42%和1.95%,并且在后处理的图像上表现出一定的鲁棒性。 相似文献
17.
刘瑞正 《河南师范大学学报(自然科学版)》1993,21(2):78-81
对于设计人工神经元网络(ANN)或神经计算机来说,一个最为重要的方面就是学习。如以什么样的算法进行学习?提供什么样的学习素材?以什么样的方式学习?怎样安排学习过程等等?我们认为这些活动非常类似于人的教育过程,基于这一认识,我们提出了ANN及神经计算机教育学的基本思想和基本方法。 相似文献
18.
在机器听觉领域中,语音信号处理与识别早已成为一个传统的研究热点;随着信息科学与技术的迅速发展,音频与音乐信号分析也逐渐成为一个新的研究热点。乐器识别是音乐分析的一个重要应用,其主要的研究方向是基于声学特征的识别,近年来,在该领域有众多研究成果出现。文章对十多年来在基于声学特征的乐器识别领域所取得的研究成果进行综述,总结乐器识别技术常用的声学特征和识别方法。 相似文献
19.
针对小目标物体检测精度差的问题,同时不以牺牲速度为代价,本文提出了一种基于全局注意力的多级特征融合目标检测算法。算法首先由卷积神经网络生成多尺度的特征图,然后采用多级特征融合的方法,将浅层和深层特征图的语义信息相结合,提高特征图的表达能力,接着引入全局注意力模块,对特征图上下文信息进行建模,并捕获通道之间的依赖关系来选择性地增强重要的通道特征。此外,在多任务损失函数的基础上增加一项额外的惩罚项来平衡正负样本。最后经过分类回归、迭代训练和过滤重复边框得到最终检测模型。对所提算法在PASCAL VOC数据集上进行了训练和测试,结果表明该算法能有效地提升小目标物体检测效果,并较好地平衡了检测精度与速度之间的关系。 相似文献
20.
为解决低光照条件下已有图像分割模型性能降低的问题,提出了一个基于RGB和深度图特征融合网络的MDF-ANet图像分割方法.为了对原始数据进行充分的特征学习,采用两路特征提取网络分别提取RGB和深度图特征;设计了一个特征融合模块,分别将两路特征提取网络对应尺度下的输出特征图通过融合模块进行融合,并作为RGB网络下一层的输入,通过不受光照条件影响的深度图来辅助RGB的特征提取;将各个尺度输出的特征图输入多尺度上采样融合模块,进行不同感受野间的信息互补,再上采样至原始输入图像大小,得到分割图像.在Cityscapes及其转化后的低光照图像上进行了一系列实验,在其验证集上取得了62.44%的均交并比(mean intersection over union,mIOU),相比只使用RGB输入的模型,性能提高了9.1%,达到了在低光照条件下提高图像分割性能的目的. 相似文献