首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
采用高温固相法合成了名义组成为Sr1.5Ca0.5 SiO4:0.01 Eu3+,nTb3+(n =3.0×10-4,7.0×10-4,1.5×10-3 mol)的荧光粉.X射线衍射测试表明荧光粉样品为单一物相.在紫外光(394 nm)激发下,样品同时产生蓝光、绿光和红橙光发射,分别对应于Eu2+离子的5d→4f,Tb3+离子的5 D4→7FJ和Eu3+离子的5D0→7FJ跃迁,表明部分Eu3+离子在还原气氛下被还原成Eu2+.红光、绿光和蓝光发射强度相当,复合得到白光.色坐标(CIE)计算结果显示,荧光粉Sr1.5Ca0.5SiO4:0.01 Eu3+,7.0×10-4 Tb3+的白色发光(CIE:x=0.321,y=0.322)接近纯白色(CIE:x=0.33,y=0.33),表明它是一种很有应用前景的基于紫外光芯片的单基白光荧光粉.  相似文献   

2.
采用共沉淀法制备了Gd(1-x)2(MoO4)3:Eu3+(x=0.05,0.1,0.2,0.4,0.6,0.8)荧光粉,通过对样品的X射线衍射谱(XRD)分析,对样品的结构进行了表征.对各样品的发射光谱和激发光谱进行了测试和分析.结果表明,Gd2(MoO4)3:Eu3+荧光粉有潜力成为高效的近紫外(蓝光)激发白光LED用红色荧光粉材料.  相似文献   

3.
用高温高压方法合成了Sr(Eu,Bi)SiO3,Sr(Eu,Bi)2SiO4。研究了高压对其结构及发光性能的影响。与用溶脑-凝胶法和常压高温法合成的产品相比较,常压制备的Sr(Eu,Bi)SiO3为六角结构,而在2.34-4.10GPa的合成压力下,未发现其结构相变。高压能显地改就样品的发光特性。其发光强度和相对量子发光效率降低,半宽明显增加,且伴有红移发生。发光强度的改变是压致晶场的变化引起的。  相似文献   

4.
采用化学共沉淀法制备了的SrMoO_4:Eu~(3+),Tb~(3+)系列荧光粉体.用X射线衍射(XRD)和扫描电子显微镜(FE-SEM)对荧光粉的结构和形貌进行了表征.研究了样品的光致发光性能,Tb~(3+)到Eu~(3+)的能量传递关系.激发光谱由一个紫外区的宽带峰和可见区的窄带峰构成,可以很好地被紫外LED和蓝光LED激发.通过调整样品的煅烧温度、Eu~(3+)、Tb~(3+)掺杂浓度,可以改变Eu~(3+)、Tb~(3+)的特征发射强度,可以对荧光粉的发光颜色进行调节.经700℃煅烧后SrMoO_4:xEu~(3+),Tb~(3+)荧光粉(x=2.5%,3.5%),在379 nm激发下荧光粉可发射出白光.通过选择合适Eu~(3+)、Tb~(3+)的掺杂浓度、煅烧温度和激发波长可以实现合成白光LED用荧光粉.  相似文献   

5.
采用甘氨酸-硝酸盐(GNP)法合成了中温固体氧化物燃料电池(IT-SOFC)阴极材料Sm1.5Sr0.5NixCo1-xO4(x=0.0、0.2、0.4、0.6、0.8、1.0),利用XRD和SEM对其物相结构和微观形貌进行了表征.结果表明,该阴极材料与电解质Ce0.9Gd0.1O1.9(CGO)在1200oC烧结时不发生反应,且在1100oC烧结4 h后,二者之间可以形成很好的接触界面.电化学性能结果表明,Sm1.5Sr0.5N i0.6Co1.4O4阴极在空气中700oC条件下测试得到的极化电阻为3.78 ohm.cm-2.电极的短期稳定性测试结果表明,在7200 s测量范围内,阴极电流密度随着测试时间的延长而缓慢下降最后逐渐趋于平稳,降幅约为2.1%.  相似文献   

6.
采用共沉淀法制备了无电荷补偿和有电荷补偿SrCaMoO_4:Eu~(3+)/Eu~(3+),Sm~(3+)红色荧光粉,研究了样品的晶体结构和发光性质.结果表明,样品具有白钨矿结构,属于四方晶系,电荷补偿明显增加了红光发射,在Eu~(3+),Sm~(3+)共掺样品中,发现红光的发射也明显增强且存在从Sm~(3+)到Eu~(3+)的能量传递现象.在有电荷补偿的样品中,观测到Eu~(3+)的最佳掺杂浓度为20%.  相似文献   

7.
采用溶胶-凝胶法,合成了Sr2—2(x y)Eux^3 Biy^3 Li^1(x^ y)SiO4发光体.得到了最佳合成条件.探讨了发光体在不同激发波长激发下的发光特性以及在激活剂、敏化剂、不同掺杂量下的发光行为.探讨了Sr2SiO4基质中Bi^3 对Eu^3 的能量传递和敏化作用.  相似文献   

8.
采用高温固相反应法合成稀土离子Eu3+掺杂的铌酸锶红色荧光粉,对其晶体结构和荧光性质进行了X射线衍射(XRD)、荧光光谱(PL)的表征,同时研究了共激活剂Bi3+对SrNb2O6:Eu3+发光性质的影响结果表明,在1 200 ℃焙烧后可得到SrNb2O6纯相;Sr1-xNb2O6:Eux3+荧光粉可以被395 nm近紫外光有效激发,发射峰以Eu3+的5D0→7F2(614 nm)电偶极跃迁为最强峰,Eu3+ 在SrNb2O6中应处于偏离反演对称中心的格位,当x=015时,SrNb2O6:Eu3+在614 nm处的发光强度最大;共激活剂Bi3+的掺入可以增强SrNb2O6:Eu3+荧光粉在325 nm左右激发峰的强度  相似文献   

9.
通过液相蒸发法合成Li Ni0.5Mn1.5O4,利用XRD(粉末X-射线衍射)、SEM(扫描电子显微镜)对产物进行表征,采用循环伏安和充放电技术对其电化学性能进行评价。结果表明,利用液相蒸发法在空气氛围即可制备纯相的Li Ni0.5Mn1.5O4产物;与其他合成方法相比,液相蒸干法具有操作简单、反应物混合均匀等优点,其中800℃的产物具有良好的电化学性能。  相似文献   

10.
采用固相法、溶胶凝胶法、共沉淀法和水热法4种实验方法,分别制得Y2O3:Eu3+红色荧光粉,并对所制得的样品进行了XRD、SEM以及荧光光谱等表征.结果表明:所制得的Y2O3:Eu3+样品均为纯的立方晶相;都能够被256 nm的紫外光激发,在612 nm处发出强烈的红色荧光,对应于Eu3+ 的5D0→7F2电偶极跃迁,当检测波长为612 nm时,4种实验方法制得的荧光粉体均在256 nm附近出现较明显的激发峰,该处的激发峰对应于从O2-的2p轨道到Eu3+的4f轨道的电荷转移跃迁.且3种湿化学方法(溶胶凝胶法、共沉淀法和水热法)的发光强度强于固相法.  相似文献   

11.
采用化学共沉淀法制备了荧光粉Ca Mo O4:Tb3+、Ca Mo O4:Eu3+,Tb3+,并对其发光性质进行了研究.Ca Mo O4:Tb3+样品在488nm激发下能发出很强的绿光,此时Tb3+的最佳掺杂浓度为15%;在Eu3+和Tb3+共同掺杂的体系中,可以观察到由于Tb3+向Eu3+的能量传递使Tb3+敏化Eu3+的发光现象.该荧光粉在近紫外光(379nm)激发下发出较强的白色荧光,光谱测试显示Ca Mo O4:Eu3+,Tb3+的发射光谱存在三个激发峰,分别位于488、543和613 nm处,能够合成较理想的白光.  相似文献   

12.
13.
采用溶胶一凝胶与热压烧结相结合的方法制备了Ca3Co4O9+6与Ca2Co2O5热电材料.x射线衍射(XRD)测试结果表明,两种材料均沿C轴有择优生长趋势.从样品的扫描电子显微照片(SEM)来看,两种材料已烧结,基本达到致密的程度.在室温至1073K温区,测试了样品的电导率和Seebeck系数.结果表明,两种材料电输运性能均随温度升高而增加,Ca3Co4O9+8。样品的电导率、Seebeck系数和功率因子明显高于Ca2Co2O5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号