首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高模糊粗糙集特征选择算法的计算效率,在每次迭代过程中通过不断缩减样本和特征的搜索范围,提出了一种新的模糊粗糙集特征选择算法.为了减少样本的搜索范围,利用样本对决策类下近似隶属度的单调性,构建样本的筛选机制,用以筛除当前所选特征子集已保持决策类下近似隶属度的样本;为了缩减特征的搜索范围,采用特征冗余性概念,构建特征搜索机制,用以移除已被确定为冗余的特征;通过融合样本筛选机制和特征搜索准则,设计模糊粗糙集特征选择的高效算法.数值实验表明,所提算法具有高效性和有效性.  相似文献   

2.
特征选择是机器学习和模式识别等领域一个关键问题。而高维特征选择又是当今研究的热点和难点。从高维特征选择的模型出发。详细说明高维特征选择所采用的各种算法类型。并分析了该模型的优劣。  相似文献   

3.
现有大多数多标记流特征选择算法在进行特征选择时,往往忽略标记间的相关性,易导致算法预测精度的下降。为解决这一问题,提出一种结合邻域信息和标记相关性的在线多标记流特征选择算法;定义自适应邻域关系解决邻域粗糙集的粒度选择问题,将其推广到多标记学习中;利用互信息计算标记间的相关性得到标记权重;通过邻域粗糙集和标记权重评估特征和标记间的相关性,并设计特征在线重要度分析、在线相关性分析和在线冗余度分析3种指标,以实现在线评价动态候选特征。在7组多标记数据集以及5个评价指标上的实验结果表明,所提算法综合性能较优。  相似文献   

4.
在分析单一、给定的邻域大小设定方法弊端的基础上,提出了基于属性数据标准差的阁值设定方法,并将蚁群优化算法引入到属性约简中,以属性重要度为启发信息,构造了基于邻域粗糙集和蚁群优化的属性约简算法,使用了4个UCI数据集进行约简.实验结果表明,提出的算法在约简的分类精度和约简中属性个数方面具有更好的性能.  相似文献   

5.
用于热力系统建模的基于粗糙集的模糊神经网络   总被引:6,自引:0,他引:6  
模糊神经网络应用于热力系统建模,虽能取得较好的效果,但当模糊规则较多时,网络学习速度较慢。针对这个问题,对传统的模糊神经网络进行了改进。利用Kohonen自组织网络对数据信息进行聚类。然后利用粗糙集规则约减的方法,获取模糊神经网络最小规则,以提高模糊神经网络的学习速度。经过锅炉汽压回路模型的仿真实验结果表明:粗糙模糊神经网络学习速度较传统模糊神经网络有较大提高,同时网络误差有所降低。  相似文献   

6.
网络的普及和交互电视的应用推动了视频分类的发展,迫切需要一种方便、快速的自动视频分类方法。本研究利用从视频片段中提取的与镜头有关的特征、颜色特征、音频特征和运动特征作为视频内容分类的可计算特征,并基于粗糙集理论,发挥其无需先验信息而从信息系统中分析多余属性的能力和从决策表中抽取规则的能力,对上述可计算特征进行分类形成规则,从而实现对视频片段的分类。  相似文献   

7.
目前大部分特征选择方法都是基于对每个特征按照一定的算法进行重要性赋值,然后选取一定数目的特征作为最后的类别中心向量.针对由于初始特征过多而造成分类精度不高和分类时间过长的缺点,引进了粗糙集中的依赖度函数对特征的重要性进行标定,从而解决了特征过多造成的缺点.最后通过实验验证了该算法,证明该方法是可行的.  相似文献   

8.
在中文文本分类中,由于中文词条总数较高,限制了中文文本分类算法的选择空间.特征选择是文本分类的一个核心研究课题.提出了一个优化的文档频(optimal document frequency,ODF),再结合粗糙集提出了一个新的基于辨识集的属性约简算法,最后把该属性约简算法同优化的ODF结合起来,提出了一个综合的特征选择方法.该综合选择方法首先使用优化的ODF进行特征初选以过滤掉一些词条来降低特征空间的稀疏性,然后再利用所提出的属性约简算法消除冗余,从而获得较具代表性的特征子集.实验结果表明该方法有较好的准确率和召回率.  相似文献   

9.
针对现有大多数多标签特征选择算法未能有效去除特征空间冗余特征,同时也忽略了标签差异性的现状,提出一种基于相关性分析的多标签特征选择方法,利用特征之间的相关度对特征进行分组,解决了特征之间的相关性问题.根据样本所对应的标签属性对样本做一个正负类的聚类,对于正样本和负样本所构成的正类簇和负类簇单独确定其聚类个数,并计算原特征到正负类簇中各个类中心的距离,如此便产生了标签特定特征空间;将标签共享的特征空间和标签特定特征空间融合,考虑到多个标签之间的个性和关联性,解决了标签的差异性问题.实验测试表明,相较于现有的多标签特征选择算法,提出的基于相关性分析的多标签特征选择方法在各个分类指标上均有较优的表现,充分证明了该方法的有效性.  相似文献   

10.
特征选择是从与应用有关的特征集合中选取出满足需要的重要性高的最小特征子集的过程,是入侵检测中的一项重要工作.针对现有的入侵检测系统存在的先验知识较少的问题,利用粗糙集中的知识表达系统来描述入侵检测特征集合,并通过计算各个特征的信息熵来确定其相对重要性,最终选择出精简的特征集合,简化了入侵检测训练集合,减少了检测时间并可以有效的提高入侵分类的准确性.  相似文献   

11.
随着大数据时代的到来,数据的类标签数量急剧增加,对现有的分类任务带来了严峻的挑战。为了解决这个问题,人们通常将标签组织成层次结构,使用结构中所包含的信息来对任务进行学习。考虑样本的不断增加,使用模糊粗糙集信息熵设计了一种面向层次分类的增量特征选择算法。考虑兄弟策略,将现有的λ条件熵推广到了层次分类的情形,设计了一种非增量的层次分类特征选择算法,设计了λ增量条件熵,基于此设计了增量版本的特征选择算法。在实验中,采用了包括非增量版本在内的7种不同的特征选择算法在5个层次数据集上与增量算法进行比较,实验结果验证了2种算法的有效性,并且所设计的增量算法能在不影响性能的情况下加快特征选择的进程。  相似文献   

12.
基于特征贡献度的特征选择方法在文本分类中应用   总被引:1,自引:0,他引:1  
在目前的文本分类问题中,特征选择方法被认为是提高分类精度和效率的一种有效方法.提出了一种基于特征贡献度FCD(feature contribution degree)的特征选择方法,本方法将某个特征对于类别之间区分能力的贡献度大小作为该特征被选取的条件,特征对于某一类别的FCD值为特征在该类中出现的文档数与在所有类别中出现的文档数的比值.对该方法进行了实验,并与一些常用的特征选择方法进行了比较,实验结果表明该方法具有更好的分类效果.  相似文献   

13.
在中文文本分类中,由于中文词条总数较高,限制了中文文本分类算法的选择空间。特征选择是文本分类的一个核心研究课题。提出了一个优化的文档频(optimal document frequency,ODF),再结合粗糙集提出了一个新的基于辨识集的属性约简算法,最后把该属性约简算法同优化的ODF结合起来,提出了一个综合的特征选择方法。该综合选择方法首先使用优化的ODF进行特征初选以过滤掉一些词条来降低特征空间的稀疏性,然后再利用所提出的属性约简算法消除冗余,从而获得较具代表性的特征子集。实验结果表明该方法有较好的准确率和召回率。  相似文献   

14.
This paper presents a novel ontology mapping approach based on rough set theory and instance selection .In this appoach the construction approach of a rough set-based inference instance base in which the instance selection (involving similarity distance, clustering set and redundancy degree) and discernibility matrix-based feature reduction are introduced respectively; and an ontology mapping approach based on multi-dimensional attribute value joint distribution is proposed. The core of this mapping aI overlapping of the inference instance space. Only valuable instances and important attributes can be selected into the ontology mapping based on the multi-dimensional attribute value joint distribution, so the sequently mapping efficiency is improved. The time complexity of the discernibility matrix-based method and the accuracy of the mapping approach are evaluated by an application example and a series of analyses and comparisons.  相似文献   

15.
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.  相似文献   

16.
特征选择是机器学习领域中的重要研究问题.作为一种重要的特征选择方法,属性约简正在受到越来越多的关注,在许多应用领域已经得到了广泛应用.文章对基于Rough Sets理论的特征选择算法作了系统的回顾和分析,具体包括启发式属性约简、基于区分矩阵的属性约简和扩展粗糙集模型的属性约简三个方面.此外,论文还给出了粗糙特征选择算法的几种常见应用,并对该领域的进一步发展进行了展望.  相似文献   

17.
借鉴基于正则回归的无监督并行正交基聚类特征选择法和最大互信息系数,提出正交基低冗余无监督特征选择法.该方法在正交基下选择具有判别能力的特征,可用最大互信息系数矩阵选择低冗余性的特征子集. 4个图像数据集上的实验结果表明:该方法选择的特征子集可以提高聚类准确率.  相似文献   

18.
传统的肿瘤基因选择算法挑选出的特征基因中存在大量噪声基因和冗余基因,从而对基因算法的准确性和分类精度产生影响.针对这一问题,将K-S检验与邻域粗糙集融合成为一种新的特征选择方法.首先,采用累积分布函数计算正负类样本的累积函数值和K-S检验统计量,对照显著性水平下的样本统计量,从而去除冗余基因和噪声基因;然后,使用邻域粗糙集进行约简,对比条件属性重要度得出最优约简结果;最后,对比K-S检验和两种基于K-S检验的特征选择方法得到的冗余度和分类精度,通过实验验证这种方法不仅能准确挑选出具有显著区分能力的肿瘤基因,且效率高具有可行性.  相似文献   

19.
文本分类中的类别信息特征选择方法   总被引:3,自引:0,他引:3  
随着网上电子文档的急剧增长,文本分类技术在信息检索中的应用变得日益重要.特征维数增加会使样本统计特性的评估变得更加困难,从而降低分类嚣的泛化能力,出现“过学习”的现象.因此,文档特征的选择和提取是文本分类的必要前提.提出一种基于类别信息的特征选择方法,谊方法在尽量保留文档信息的同时,考虑了文档的类别信息.实验表明,这种方法的分类性能比较好,特别是在微平均指标上,与OCFS以及卡方统计量相比有较大幅度的提高.  相似文献   

20.
提出了基于粗集理论的一种图像识别系统。该系统包括图像预处理、特征提取、决策表生成、条件属性简化等。运用粗集方法,能有效地压缩图像特征数目从而大大提高运行速度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号