首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着城市隧道建设环境的日益复杂,很多矩形隧道不再具备明挖条件,而采用顶管施工,合理预测矩形顶管施工引起的地表沉降是工程成败的决定性因素之一.依托苏州地铁5号线某车站矩形顶管工程,建立基于随机介质理论的地层损失模型和基于弹性力学Mindlin解的计算模型,得到矩形顶管施工引起地表沉降的计算公式.选取K34断面,对比了现场实测数据与理论计算的结果.研究结果表明:建立的矩形顶管地表沉降预测模型能较准确地预测矩形顶管引起的地表沉降,其预测值和现场实测数据的误差仅为10.6%;地层损失引起的地表沉降是总地表沉降的主要组成部分,侧摩阻力与正面顶推力占比较小;理论预测曲线的沉降槽宽度与实际沉降槽宽度较为接近,约为2~3倍隧道埋深.  相似文献   

2.
以西安地铁3号线某暗挖站区间双线地铁隧道施工为背景,采用有限差分软件FLAC3 D建立土体三维力学模型对双线地铁隧道台阶法施工过程进行动态模拟;并结合现场实测数据分析台阶法施工引起的地铁隧道围岩及地表变形规律。结果表明:(1)台阶法施工诱发的横向地表沉降呈"V"形,最大地表沉降出现在隧道中线偏右方约3 m,最终形成的沉降槽宽度约为隧道洞径的2倍。(2)台阶法施工诱发的纵向地表沉降在开挖面前地表沉降量最大,随着开挖掌子面距离越远,沉降量越小,最后在开挖进尺40 m附近趋于稳定。(3)隧道拱顶纵向沉降曲线与地表沉降变化趋势基本一致。帮部围岩变形呈现出先快速增长后逐渐平稳的趋势,且影响范围逐渐增大。所得结论可为双线地铁隧道施工和变形预测提供参考。  相似文献   

3.
以西安地铁3号线某暗挖站区间双线地铁隧道施工为背景,采用有限差分软件FLAC3 D建立土体三维力学模型对双线地铁隧道台阶法施工过程进行动态模拟;并结合现场实测数据分析台阶法施工引起的地铁隧道围岩及地表变形规律。结果表明:(1)台阶法施工诱发的横向地表沉降呈"V"形,最大地表沉降出现在隧道中线偏右方约3 m,最终形成的沉降槽宽度约为隧道洞径的2倍。(2)台阶法施工诱发的纵向地表沉降在开挖面前地表沉降量最大,随着开挖掌子面距离越远,沉降量越小,最后在开挖进尺40 m附近趋于稳定。(3)隧道拱顶纵向沉降曲线与地表沉降变化趋势基本一致。帮部围岩变形呈现出先快速增长后逐渐平稳的趋势,且影响范围逐渐增大。所得结论可为双线地铁隧道施工和变形预测提供参考。  相似文献   

4.
以地铁超小间距隧道施工中的地表沉降及其规律为研究目标,根据广州地铁三号线岗石区间超小间距隧道的施工实践,采用实测资料分析和数值计算的方法,研究了地表沉降的过程和阶段,将沉降过程划分为4个阶段,后掘隧道开挖引起先掘隧道的地表沉降约为地表沉降总量的30%~4J0%:两隧道的变形破坏区在T型土体内连为一体,T型土体成为地表沉降最人的区域;提出了控制地表沉降的设计和施工方法。  相似文献   

5.
以杭州市某污水管道顶管施工上穿既有地铁隧道为背景,利用FLAC3D模拟顶管施工过程,将模拟结果与实测数据进行对比,验证了模型的合理性.通过改变顶管管径、管材及地铁隧道周围土体的特性,分析了不同工况下顶管上穿施工对既有地铁隧道的位移影响.研究结果表明,顶管上穿施工对既有地铁隧道所产生的最大位量均位移于顶管轴线下方的地铁截面处,离顶管轴线越远,变形越小;地铁盾构隧道的变形随顶管的管径的增大而增大,而且对竖直方向位移的影响远大于对水平方向位移的影响;管材的弹性模量越小,地铁隧道的变形越大;地铁隧道周围土体弹性模量越小,顶管施工对隧道位移的影响越大.  相似文献   

6.
开展西安饱和软黄土地层地铁隧道施工地表沉降特性研究具有重要理论意义与工程应用价值,以西安地铁三号线通化门-胡家庙区间隧道右线为工程背景,采用现场实测的手段研究了饱和软黄土地层矿山法地铁隧道施工诱发的的地表沉降规律,并与该地层下采用矿山法与盾构法施工和饱和软黄土地层与普通黄土地层下的地表沉降值进行了对比。实测数据表明饱和软黄土地层矿山法施工诱发的地表沉降最大值位于隧道中心处,其值为48.98 mm,影响范围约为2倍的隧道洞径,最终的沉降槽宽度为2D;纵向地表沉降变形历时曲线可分为3个阶段,其中第二阶段占总沉降量的3/4,为主要沉降阶段。饱和软黄土地层采用盾构法施工时地表沉降最大值为35.5 mm,而采用矿山法施工时地表中心沉降最小值为41.2 mm;与普通黄土地层相比,在普通黄土地层采用矿山法施工时地表中心最大沉降值为28.1 mm.结果表明:饱和软黄土地层地铁隧道施工诱发的地表沉降远大于普通黄土,当隧道存在饱和软黄土地层时必须引起重视应优先采用盾构法施工,如采用矿山法施工必须采取相应的控制措施。  相似文献   

7.
以青岛地区某区间隧道穿越建筑物工程为例,该地铁隧道因地质条件及周边环境的复杂性、不确定性等特点,采用矿山法施工,施工风险较高.本文结合该区间隧道工程地质及水文地质条件和周边环境特点,进行了数值模拟,结果表明,在上软下硬地层中采用矿山法分上下台阶施工安全、经济、快速,可以有效控制地表和拱顶沉降以及衬砌和支撑结构受力,确保施工过程的安全,并提出了具体的风险控制措施,从而确保该工程的顺利进行.对将来隧道在上软下硬地层中下穿既有线或建构筑物的施工具有一定参考价值.  相似文献   

8.
为了探究砂质粉土地层矩形顶管施工对周边环境的影响,依托南京某城市地铁车站出入口过街通道矩形顶管工程,采用三维数值模拟和现场监测相结合的方法研究了矩形顶管法在施工过程中呈现的地表沉降规律.探讨了是否及时注浆、支护压力、注浆压力及注浆量对地表沉降的影响,并针对工程中土体变形问题给出了相应的地表沉降控制建议.结果表明,在掘进过程中,顶管机在不同的区段应采用与土层相适应的支护压力和注浆压力,同时,要采用同步注浆的措施以及适量的注浆量才能有效控制地表沉降量,当支护压力、注浆压力、注浆量等施工参数分别设定在开挖面侧向静止土压力的1.0~1.5倍、150~175 kPa、注浆充盈系数为1.25~1.75时地表沉降控制效果最佳.  相似文献   

9.
地铁隧道施工阶段及施工后期诱发的地表沉降是造成各种建、构筑物产生外观及功能上损害的主要原因,因此,研究由浅埋暗挖施工引起的地表沉降问题具有重要意义.以某地铁车站暗挖工程为研究背景,采用FLAC3D数值分析的方法,对该地区浅埋暗挖施工引起的单柱双联拱地铁隧道地表沉降进行了数值模拟,同时分析了隧道变形的实测数据及施工工序对沉降的影响.研究表明:中洞开挖引起的沉降较快,而由于中柱支撑侧洞开挖引起的沉降较慢,在施工过程中应当引起注意.该研究为工程的顺利实施提供了依据和指导,可供类似工程参考.  相似文献   

10.
为掌握深基坑施工引起地表沉降规律,确保深基坑工程质量和安全稳定性,以大连地铁某车站为研究背景,基于FLAC3D仿真技术构建车站深基坑土岩体摩尔-库仑弹塑性模型,对其土岩体变形和支护结构受力状况进行模拟分析,并结合现场实测数据进行对比检验,利用MATLAB绘制地表沉降对比分析曲线,从而找出地铁车站深基坑开挖过程中地表沉降量变化趋势.研究结果表明:由于基坑周围土体及地下岩层应力的影响,随着深基坑开挖工程推进到中期,地表沉降梯度增大.该研究成果可为合理预测地铁车站深基坑开挖过程中的地表沉降风险值,有效预防基坑施工事故提供技术支持.  相似文献   

11.
城市地铁隧道施工引起的地面沉降   总被引:2,自引:0,他引:2  
分析了城市隧道施工引起地表沉降的原因, 主要包括地层损失和在新的应力状态下土层固结与蠕变方面的原因.通常认为地层损失的体积等于隧道地表沉降槽的体积,而忽略了由于隧道施工降水排水和新的应力状态下土层固结引起的沉降变形.以矿山法施工为例,推导了隧道施工在新的状态下的土体内部孔隙水压消散的公式,进而考虑土体的固结引起的沉降变形.研究成果应用到南京地铁Ⅰ号线鼓楼玄武门段,根据具体地质条件和矿山法施工的实施进行理论计算分析,结果表明同时考虑地层损失和土体固结变形计算的地表沉降与实测结果吻合较好.  相似文献   

12.
为了揭示地表沉降与管周土体扰动沿顶进方向的真实变化规律,本文提出了真实复杂地层三维数值建模方法。依托某市北线引水工程隐患整改顶管工程项目,采用FLAC3D分析平台开展了真实复杂地层和简化均匀地层条件下的大直径钢顶管施工数值模拟研究。模拟结果及现场地表沉降实测结果对比表明:基于真实复杂地层模型的模拟结果与现场沉降监测结果吻合较好,能够准确反映地表沉降沿纵向的变化规律,而简化地层模型模拟结果与监测值差距较大。扰动分析表明顶管施工时会引起其上方地层的沉降变形和下方地层的抬升变形,其变形值大小与地层土体性质和分布有关。顶管上覆土体横向位移基本朝向顶管轴线,其变形受土体空间分布的影响较小,但顶管下部土体的横向变形受土体空间变化影响较大。地表沉降的横向影响范围为?5.3D(D为顶管直径),且受土层分布影响较小,但地表沉降值受地层分布影响较大。  相似文献   

13.
卢声亮 《科技信息》2011,(18):178-179
盾构技术在地铁开挖工程中有广泛应用,土体开挖引起地表沉降,影响到隧道本身及地表建筑物的正常使用及安全。利用大型通用有限元软件Abaqus,综合考虑各种复杂影响因素,建立盾构隧道三维开挖有限元模型,对盾构隧道动态开挖过程进行精细模拟,得出盾构开挖时土体位移沉降规律,讨论盾后注浆压力及支护压力模拟取值变化对地表最大沉降(隆起)的影响。研究的结论具有重要的理论价值和工程实际意义。  相似文献   

14.
为研究道路施工引起下方既有地铁隧道的沉降问题,在地铁隧道上方斜穿施工道路的基础上,进行了现场隧道沉降变形实测研究,分析了道路在路基注浆加固、路床和路面结构层施工阶段中地铁隧道的沉降曲线。建立地铁隧道-土体-道路模型对道路施工的注浆加固过程及路床和路面结构层施工进行模拟,通过比较地铁隧道沉降计算结果与现场实测值,验证了该精细化模型的准确性。基于此,分析了路床和路面结构层总施工厚度、道路土体性质、隧道下卧土层、隧道衬砌强度等关键参数对地铁隧道的沉降影响规律。结果表明:地铁隧道的沉降值与施工厚度呈正相关关系;道路的存在对隧道的沉降影响越小,其弹性模量和泊松比对地铁隧道沉降几乎没有影响;卧土层的弹性模量越大,土层越不易变形,且地铁隧道沉降越小;衬砌弹性模量增大对地铁隧道沉降影响反而越小。  相似文献   

15.
为揭示三线隧道开挖的合理施工顺序,以大连地铁河口站站后折返线隧道与高河区间地铁正线隧道小净距三线并行段为工程背景,采用数值分析和现场试验的方法,分析了小净距三线隧道地表沉降规律,提出了CR D工法与优化的施工工序.研究结果表明,合理的施工顺序,能够有效地控制地表沉降,能够实现小净距隧道群安全快速施工.CRD法在大连地铁河口站折返线三线隧道开挖的成功实施,可为大连地区及类似条件下的隧道建设提供工程参考和借鉴.  相似文献   

16.
顶管施工隧道扰动区土体变形计算   总被引:12,自引:1,他引:11  
针对目前已有顶管施工扰动区土体变形预计公式存在的缺陷,提出了一种新的扰动区土体变形计算方法.将顶管施工隧道周边岩土体看作一种随机介质,将隧道开挖(或挤压)所引起的土体移动看作一随机过程,应用随机介质理论,对顶管施工隧道开挖引起的扰动区土体的移动与变形进行分析,推导了相应的扰动区土体下沉(隆起)、倾斜、水平移动、水平变形及弯曲曲率计算公式,并编制了相应的计算程序.研究结果表明:该方法预计结果精度高;顶管施工引起的扰动区土体的变形较大,超出地表建筑物及地下管线的允许变形,在实际施工中应采取有效的防护措施.  相似文献   

17.
崇文门站顶管预支护方案三维有限元分析   总被引:1,自引:0,他引:1  
北京地铁五号线崇文门站,下穿既有地铁一号线区间隧道,车站顶板与区间隧道底板间距2.858 m.为了严格控制既有环线区间隧道的沉降,确保环线地铁运营安全,首次采用了顶管作超前预支护.考虑不同的顶管直径以及周围地层的弹性模量对地表、拱顶和既有线的变形影响,用3D-Sigma三维有限元软件进行施工效应的计算模拟,掌握顶管预支护洞室的力学效应,预测车站施工引起既有隧道的沉降量.计算表明用大刚度的顶管作超前预支护,可以满足既有线地铁运营和城市地表建筑物变形控制要求.  相似文献   

18.
为了研究顶管隧道上穿既有地铁隧道施工对既有隧道及周围土体的影响,以电缆隧道上跨西安地铁5号线为研究背景,基于自主设计室内顶管顶进试验装置,采用模型试验和有限元数值模拟相结合的方法研究顶管隧道上跨既有地铁隧道影响机制。试验主要对地表位移、既有隧道应变和既有隧道上方的土压力进行分析,并通过数值模拟对模型试验进行补充研究和对比验证。研究结果表明:地表位移与顶管隧道的埋置深度成反比,当新建隧道埋深小于1.5D(D为隧道直径)时,埋深对地表位移影响较大;顶管轴线两侧土体变化趋势基本对称,与顶管轴线距离越大,土体变形量越小;顶管隧道施工对既有隧道引起位移变化的影响主要集中在顶管正交于既有隧道的位置,既有隧道随着顶管隧道的顶进,逐渐呈隆起状态,并且隧道的拱腰位置隆起要早于拱顶;隧道拱顶纵向最大附加应变均发生在隧道中部即对称面位置,且离顶管隧道轴线越近,附加应变变化也越大;附加应变的变化与夹土层厚度成反比;因试验中有多种客观因素的影响,数值模拟和模型试验的结果虽在数值上有一定差异,但变化规律存在着一致性,由此进一步验证了模型试验结论的可靠性。  相似文献   

19.
针对地铁隧道开挖诱发地表下沉,致使已有桥基变位的问题,采取经验法的叠加原理预测双线隧道开挖对地表沉降曲线的影响。以西安地铁3#线某区间为工程背景,采用三维有限差分数值(FLAC3D)软件模拟浅埋暗挖不同工况对地表和邻近桩基沉降的影响。理论分析及数值模拟结果均表明:双线隧道引发的地表沉降呈"U"型曲线分布,且沉降槽宽度影响范围和地表沉降均较单线隧道大。环形开挖预留核心土法可作为该区间隧道的主要施工工法。现场监测分析表明:该施工工法能有效地降低地表沉降和桩基变形,对黄土地区该类隧道工程具有一定的指导意义和借鉴价值。  相似文献   

20.
城市地铁线路网络渐趋密集,经常出现隧道近接既有建、构筑物施工的情况,变形控制要求严格,故精细预测隧道施工引起的地表及深层土体变形尤为必要.相较于黏土地层,砂土地层中隧道开挖引起的地表及深层土体变形十分复杂,具体表现为:隧道开挖过程中,地表以下土体的体积将随隧道土体损失率V_t的改变而发生改变,之前所提出的土体变形模式均不能很好地解释砂土中隧道开挖引起的土体体积变化行为.以之前的砂土隧道模型试验为研究对象,建立数值模型,对试验过程中地表以下土体的体积响应进行分析.研究发现,隧道开挖时,隧道周围土体的体积响应与应力路径密切相关,不同应力路径下的土体体积响应有所不同.数值结果表明,根据不同位置处应力路径特点,地表以下土体可被分成4个特征区域,地表及地表以下不同深度位置处获得的土体损失率(V_s和V_(sub))与隧道土体损失率V_t之间的差异均可通过4个特征区域的土体体积变化来解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号