首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
报道一种新型固态电解质NO2气敏传感器,它以人工钠沸石材料为气敏固态电解质,新型银离子玻璃为气敏辅助性材料,溅射金膜为工作电极,埋藏于银离子玻璃中的银球为参比电极,构成电位型气敏传感器,可在线检测来自工业废气和汽车尾气等污染源的NO2。  相似文献   

2.
固态锂金属电池相较于传统液态电池,其能量密度更高、安全性更好,具有巨大的应用前景。但聚合物固态电解质离子电导率低、强度低、电化学稳定性差,阻碍了其进一步发展。将丁二腈与聚碳酸丙烯酯通过无溶剂法加以玻璃纤维作为支撑制备了室温下高性能的复合固态电解质。所制备的复合固态电解质在室温下离子电导率达3.06×10?4 S/cm,锂离子迁移数达0.47,电化学窗口最高达4.3 V;其锂金属对称电池在电流为0.1 mA/cm2的条件下,稳定循环超400 h;磷酸铁锂固态锂金属电池0.5 C循环100次的容量保持率为95.9%,展现出良好的循环稳定性。  相似文献   

3.
聚合物作为一种固态电解质具有优良的力学和机械性能,它的性质很大程度上决定了固态锂电池的电化学性能。对部分近期比较热门的聚合物电解质的研究进展进行简要总结,将不同聚合物电解质的性能和优缺点进行比较和讨论,并且对聚合物电解质的研究发展进行展望。  相似文献   

4.
以Nafion膜为固态电解质,采用浸渍-还原原位化学沉积方法制备金属/高聚物复合膜电极,研制了固态电解质型乙烯催化传感器。从I-R原位化学沉积形成膜电极研究中得出氯铂酸的NH4OH溶液为较好的Pt盐浸渍液,并且铂盐液浓度、还原溶液度膜起到关键作用。采用电位响应法对传感器进行乙烯催化传感器性能研究,并在近室温下得到了较好乙烯传感行为。  相似文献   

5.
聚合物基固态电解质具有优异的稳定性、加工性和低成本,是实现全固态锂电池的理想电解质,然而低离子电导率严重阻碍了其应用。加入无机填料,构筑聚合物基复合固态电解质是提升离子电导率的有效策略。首先,讨论了聚合物电解质的离子传导机理及复合固态电解质组分间的协同作用。其次,从机械强度、电化学稳定窗口、离子电导率、锂离子迁移数四个方面阐述了填料的作用,并以惰性填料、活性填料、功能性填料为分类对近些年填料的研究进展进行了系统介绍,阐释了其物理化学性质对电解质性能的调控机制。最后,在总结现有研究结果的基础上,针对关键问题对未来的研究方向进行了展望。  相似文献   

6.
典型的电化学电池由两个电极所组成,这两个电极被称之为电解质的导体分离开来。例如,车用电池含有Pb、PbO_2电极和由稀硫酸组成的液态电解质。而手电筒电池具有锌和碳电极,此二电极处于以二氧化锰为主的固态电解质中。现在日本的Matsushita电业公司已研制出该公司所自称的世界上第一个纸型固态电解质。  相似文献   

7.
 电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性。全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。本文阐述了全固态锂电池的优点,即固态电解质的使用有助于提高锂电池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域;指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点;介绍了固态锂电池的3 种结构类型,即薄膜型、3D 薄膜型和体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。  相似文献   

8.
简要介绍了纳晶染料敏化太阳能电池的结构及工作原理. 根据电解质的形态不同,将其分为液态电解质太阳能电池、准固态电解质太阳能电池和固态电解质太阳能电池. 着重对纳晶染料敏化太阳能电池准固态和固态电解质的研究进展进行了综述,同时总结了作者所在实验室在这方面所做的工作.  相似文献   

9.
低温固态电解质乙烯催化传感技术研究   总被引:2,自引:1,他引:1  
以高聚物Nafion膜为固态电解质,利用混合压膜法制作传感催化电极,研制了低温固态电解质乙烯催化传感器。以氧为参比气体,Pd黑为电极催化材料,考察了Nafion膜含水量、不同粘合剂、电极片中Teflon含量,以及温度对乙烯传感性能的影响,得出了较佳的膜电极制作工艺参数;以空气为参比气体,对乙烯传感也进行了一定探讨。  相似文献   

10.
溶解铸膜法制备了PVA(聚乙烯醇)-KOH碱性聚合物电解质.用循环伏安和激光拉曼光谱对其电化学稳定性进行了研究,并将其应用于锌镍二次模拟电池.结果表明,该固态电解质具有较好的稳定性,循环寿命远远高于以5 m o l/L KOH水溶液为电解质的锌镍电池.  相似文献   

11.
以MgS+5%TiS2作为固体电解质,以Mo+MoS2作为参比极研制了定硫探头,并在1623K利用其对碳饱和铁熔液中的硫含量进行了测定·优化了定硫探头的结构,解决了电解质管的炸裂和漏气问题,同时采用特殊工艺抑制了硫化物水化·研究结果表明,该定硫探头的电动势信号稳定,重现性好,持续时间长,是一种比较成功的定硫探头·  相似文献   

12.
气固两相流速度及质量流量的静电测量法研究   总被引:2,自引:0,他引:2  
介绍了一种气固两相流速度及质量流量的静电测量方法,实现了静电法在气固两相流速度及质量流量测量中的应用.通过特殊设计的静电传感器系统,利用气固两相流中固相微粒的荷电信号直接测量两相流的速度和质量流量.速度测量采用互相关分析的方法得到静电信号相移时间,计算出固相速度;通过实验确定静电传感器上静电信号电压有效值与已知两相流质量流量的关系,建立了系统电压一质量流量曲线.实验结果表明,静电测量方法可准确跟踪并测量气固两相流的固相速度,实现两相流的在线无损检测.  相似文献   

13.
以金属Te颗粒为原料,采用热蒸发法于镀金硅基板表面制备出TeO2纳米线,并以其为气敏材料制备成气敏元件.采用XRD,SEM和TEM表征TeO2纳米线的相组成和微观结构,结果表明,TeO2纳米线具有单一的四方相晶体结构,长度约为几十微米,直径约为80~600nm.在TeO2纳米线的顶端未发现Au颗粒,表明TeO2纳米线按照气-固机制进行生长.气敏特性的研究结果表明,TeO2纳米线呈现p型半导体特性,在室温条件下对NO2气体具有良好的响应,气体灵敏度与NO2气体体积分数呈线性增加关系.最后对气敏机制进行了初步探讨.  相似文献   

14.
采用旁热式烧结工艺制成了酞菁铜NO_2气敏元件.该元件的灵敏度比较高,在低浓度范围内线性较好,可检测浓度为5ppm的NO_2;响应速度快(小于25s),有极高的选择性,对其它气体基本不响应,且具有一定的抗湿性.  相似文献   

15.
准确而可靠地监测气体中的氧浓度,对于科学实验和工业生产是十分重要的。在使用二氧化锆基固体电解质氧传感器测定气体中氧含量时,工作电极和参比电极的温度差是测量误差的重要来源。本工作根据实验测定得到了两电极温度差(T_2-T_1)和气体流量 Q 的关系,其结果可以用下式表示T_2-T_1=aQ~b这里 a 和 b 是常数。用本实验结果,能够得到由二氧化锆基固体电解质氧传感器测得的准确而可靠的数据。本文还讨论了混合电动势和气流沿程阻力对氧测量误差的影响。为了改进氧传感器的性能,本文提出了一些建议。  相似文献   

16.
In~(3+)掺杂SnO_2纳米粉体的制备及气敏性能研究   总被引:1,自引:0,他引:1  
以自制的SnO2和In2O3为原料,通过固相研磨法制得了一系列掺有In3+的SnO2纳米粉体,利用X射线衍射仪、透射电镜等测试手段对材料的结构、形貌进行了测量和表征.将该材料制成气敏元件,采用静态配气法测试了材料的对Cl2,NO2,H2,H2S,乙醇,甲醛等气体的气敏性能.探讨了掺杂量、工作电压对SnO2粉体材料气敏性能的影响.研究发现:其中当掺杂In2O3的质量分数为3%时,元件在加热电压为3.5 V下对体积分数为30×10-6的Cl2的灵敏度达到3036,而对其他气体几乎没有响应或者响应很小,元件具有较好的响应-恢复特性,响应时间和恢复时间分别是3 s和8 s,最后简要讨论了SnO2对的Cl2气敏机理.  相似文献   

17.
采用离子液体的二氧化硫电化学传感器的研究   总被引:7,自引:0,他引:7  
作者采用离子液体作为二氧化硫传感器的电解质溶液,并用微分脉冲伏安法(Dfferen-tial Pulse Voltammogram)考察了对SO2气体的响应。结果表明,离子液体传感器对S2气体有很好的电化学响应,灵敏度高和重现性好。其结性范围为100-700ppm,检测限为50ppm。  相似文献   

18.
热式多传感器信息融合的气固质量流量检测   总被引:3,自引:1,他引:2  
提了邮热式多传感器信息融合的气固质量流量检测方法,采有复合传感器,可同时按换热法和热平衡法两种原理进行固相流量在线测量,研究了两种方法的测量原理和数学模型,结合两种方法的测量结果,经过信息融合处理,可以提高气固质量流量检测的精度和可靠性。  相似文献   

19.
通过热分解法 ,制备获得纳米WO3 材料 ,以此WO3 为气敏材料 ,应用溶胶凝胶法 ,制备纳米SiO2 掺杂材料 ,研制NO2 气敏元件 .该元件对NO2 气体有较高的灵敏度和较好的选择性 .利用扫描电子显微镜、X射线衍射仪 ,分析材料的微观结构 ,进行气敏特性机理探讨 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号