共查询到19条相似文献,搜索用时 93 毫秒
1.
在分析类Apriori算法存在效率瓶颈的基础上,提出了一个高效改进算法——基于分类树的关联规则挖掘算法.该算法只需要两次访问数据库,把数据库中的数据利用分类树来存储,减少了访问数据库的次数;并且由分类树的全部或部分来求得频繁项目集,减少了求频繁项目集的比较次数.此算法通过结合Apriori和FP—tree两种算法来提高挖掘效率,降低了挖掘算法的时间复杂度和空间复杂度.通过多次试验证明该算法比Apriori及其改良算法的挖掘效率高2到8倍. 相似文献
2.
基于候选最大频繁项目集的关联规则挖掘算法 总被引:3,自引:0,他引:3
提高频繁项目集算法的效率是关联规则挖掘研究的一个重点领域 ,就此提出了基于候选最大频繁项目集的关联规则挖掘算法 ,通过实例说明了算法的执行过程 ,并与FP -Tree等其他算法作了比较 相似文献
3.
针对垂直数据分布数据库FP-tree生长基本算法中存在的链接点表空间随问题规模线性增加的问题提出一种改进算法.采用定长的链接点表进行分段扫描,在空间需求恒定的前提下构造FP-tree.证明了改进算法与基本算法构造的FP-tree是同构的.实验与分析结果表明,当应用于同一数据集时,改进算法所需空间恒定. 相似文献
4.
提出一种有效的基于频繁闭项目集的关联规则挖掘算法RIFCI.该算法采用挖掘频繁项目闭集取代传统的频繁项目集,同时在项目集和事务集中展开搜索.通过对UCI机器学习库中10个数据集的测试,与工业标准C4.5比较,错误率低于19.48%,在准确度不变的情况下,生成规则数目低于传统算法,提高了算法的效率. 相似文献
5.
赵旭俊 《太原科技大学学报》2012,(1):18-22
传统的基于支持度—置信度框架的关联规则挖掘方法可能会产生大量不相关的、甚至是误导的关联规则,同时也不能区分正负关联规则。在充分考虑用户感兴趣模式的基础上,采用一阶谓词逻辑作为用户感兴趣的背景知识表示技术,提出了一种基于背景知识的包含正负项目集的频繁模式树,给出了针对正负项目集的约束频繁模式树的构造算法NCFP-Construct,从而提高了关联规则挖掘的效率和针对性,实验结果显示该方法是有效的。 相似文献
6.
王琳 《合肥学院学报(自然科学版)》2009,19(4):51-55
随着计算机技术和通信技术的不断发展,用户存储了越来越多、具有很高使用价值的信息,不断涌现的大量信息在给人们带来方便的同时也带来了问题,怎样提取有用信息使得数据挖掘技术应运而生.关联分析是数据挖掘的本质,关联规则挖掘是进行关联分析最常用的方法.在关联规则的Apriori算法的基础上,指出了该算法的不足之处,提出了一种新的改进算法,从而增强了算法的适应性. 相似文献
7.
在挖掘最大频繁项目集的过程中,通过改变最小支持度阈值可以挖掘更有用的最大频繁项目集,为此提出了一种最大频繁项目集更新挖掘算法UAMMFI(Updating Algorithm for Mining Maximal Frequent Itemsets)。算法基于改进后的频繁模式树结构,在更新挖掘过程中,不需产生候选项目集和条件模式树,并且充分利用先前已挖掘的最大频繁项目集中包含的信息,快速更新挖掘出最小支持度阈值变化后的最大频繁项目集。实验结果表明,算法能够高效更新挖掘最大频繁项目集。 相似文献
8.
分析了基于频繁模式的关联规则算法Fptree,给出了一种基于二进制表示的改进算法,详细介绍了该算法的主要思想,算法实现方案.并通过实例比较了两种算法,证明新算法提高了挖掘规则的效率. 相似文献
9.
基于改进FP-树挖掘最大频繁模式 总被引:3,自引:1,他引:3
由于挖掘密集型数据的频繁模式完全集非常困难 ,因而改进了传统的FP -树结构并提出了一种基于改进FP -树的最大频繁模式挖掘算法IFP -MAX ;通过引入后缀子树的概念 ,在挖掘过程中不用生成最大频繁模式候选集 ,大大提高了算法的时空效率。实验表明 ,IFP -MAX的挖掘速度比Miafia和GenMax快得多 相似文献
10.
提出了一种快速关联规则挖掘算法DPD,算法通过模式分解,在每次遍在中减小模式量和模式长度,动态地减小数据集大小,从而有效减少候选关联规则的产生和计数的费用,提出了基于频繁集lk生成最长项目子集M(k)的FPS算法,DPD算法利用了M(k)进行模式分解,有效克服PD算法在|-Lk|很大时模式分解效率低的缺点,减少由Ck生成Ck 1时的遍历次数。 相似文献
11.
Xiang Jian-wen He Yan-xiang Kokichi Futatsugi Kong Wei-qiangSchool of Computer Wuhan University Wuhan Hubei China State Key Lab of Software Engineering Wuhan University Wuhan Hubei China School of Information Science Japan Advanced Institute of Science Technology - Asahidai Tatsunokuchi Ishikawa - Japan 《武汉大学学报:自然科学英文版》2003,8(2):351-357
Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth) method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new projection frequent pattern tree (PFP-tree) algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence when constructing the frequent pattern tree (FP-tree). Efficiency of mining is achieved by introducing the projection technique, which avoid serial scan each frequent item in the database, the cost is mainly related to the depth of the tree, namely the number of frequent items of the longest transaction in the database, not the sum of all 相似文献
12.
基于集合运算的频繁集挖掘优化算法 总被引:1,自引:0,他引:1
挖掘关联规则是数据挖掘中一个重要的课题,产生频繁项目集是其中的一个关键步骤。 提出了一种基于集合运算的频繁项目集挖掘算法,并将该算法与经典算法Apriori进行比较。该算法只需要对数据库扫描一遍。实验表明该算法的效率较好。 相似文献
13.
基于FP-Tree的最大频繁项目集更新挖掘算法 总被引:4,自引:1,他引:4
发现最大频繁项目集是多种数据挖掘应用中的重要问题.在应用中用户需要调整最小支持度,以发现更有用的最大频繁项目集.为此提出了一种最大频繁项目集更新算法(UMFPA),该算法通过对频繁模式树(FP-Tree)中的频繁项目头表(H Table)增加两个域,从而将减少在数据库不变而最小支持度变化的情况下的更新挖掘最大频繁项目集的费用.实验结果表明,算法在进行最大频繁项目集更新挖掘时具有很好的性能. 相似文献
14.
基于DSCFCI_tree的带项目约束的数据流频繁闭合模式挖掘算法 总被引:1,自引:0,他引:1
根据数据流的特点,提出了一种挖掘约束频繁闭合项集的算法,该算法将数据流分段,用DSCFCI_tree动态存储潜在约束频繁闭合项集,对每一批到来的数据流,首先建立局部DSCFCI_tree,进而对全局DSCFCI_tree进行有效更新并剪枝,从而有效地挖掘整个数据流中的约束频繁闭合模式.实验表明,该算法具有很好的时间和空间效率. 相似文献
15.
发现频繁项集是关联规则挖掘的关键步骤。然而,大多数频繁项集求解算法因需要产生大量候选集而降低了效率。该文在研究概念格和频繁项集关系的基础上,将剪枝概念格PCL模型引入数据库中频繁项集的表示,利用概念间的关系性质,在不丢失信息的同时能有效压缩频繁项集的规模,并提出基于PCL模型的频繁项集求解算法。该算法基于Apriori性质,在构造过程中及时、动态地剪枝,删除与频繁项集求解无关的概念,从而有效地改善了频集挖掘算法的时空性能;实验证实了算法良好的性能。 相似文献
16.
一种基于关联规则的数据挖掘算法实现与应用 总被引:1,自引:0,他引:1
对Apriori算法加以改进,提出了一种更高效的关联规则挖掘算法,在扫描数据库的同时把支持每个项目的事务都标记出来,采用一种新的方法来计算候选项目集的支持度.该算法只需对源数据库进行一次扫描,就可以找出所有的频繁集,具有很高的效率. 相似文献
17.
关联规则挖掘是数据挖掘技术的一种简单又很实用的方法,有着广泛的应用。该文利用部分支持度树的结构提出了对关联规则的增量式更新算法,用于解决向数据库中添加新的数据而最小支持度不发生变化时的关联规则更新问题。该算法有效地利用已挖掘的关联规则和保留的部分支持度树来改善性能,并且只需对新增数据库部分进行一遍扫描,从而进一步提高算法的效率。实验结果表明,该算法能有效地解决关联规则的更新问题,提升挖掘效率。 相似文献
18.
一种基于限制的关联规则数据开采的算法 总被引:2,自引:1,他引:1
针对海量数据库开采时,现有的关联规则算法效率非常低下的问题,提出一种附加最小保证度的限制,并在此基础上提出一种新开采算法,可减少频繁项目集的数量,并显著地降低I/O时间和CPU时间。 相似文献
19.
提出了对基于频繁模式矩阵Fp-array的挖掘的改进算法。首先对各项的投影矩阵预处理划分成若干同维矩阵,并根据同维矩阵的权值对剩余未搜索项进行预先判断,进而对搜索最大频繁项目集进行有效剪枝,减少了搜索范围。经过实验和算法分析,证明了改进算法具有明显的优越性。 相似文献