首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
叉车是工业搬运车辆,对于转向特性要求比其他车辆更高。文章根据理想传动比的概念,以线控转向传动比的控制为研究对象,线控转向系统整车二自由度模型为基础,结合叉车自身特点与转向要求,提出了传动比模糊控制策略,旨在进一步改善系统的转向性能。根据TE30型托盘搬运叉车的数据进行实际计算和分析,给出了基于车速、方向盘转角的叉车动态转向系统变传动比的模糊设计方法。仿真结果表明,利用模糊控制方法确定的传动比可使车辆在低速行驶时"灵活",高速行驶时"迟钝",使灵敏度趋近于常数,有利于提高叉车操作稳定性,减轻驾驶员的负担。  相似文献   

2.
分析了主动前轮转向系统双行星齿轮机构的工作原理,根据前轮转角的合成机理,分别建立了方向盘转角和叠加转角的运动学模型,通过比较单、双行星齿轮机构输出轴与输入轴的转速差,发现双行星齿轮机构比单行星齿轮机构的传动效率高,从而进一步推导出基于双行星齿轮机构的电机转角随方向盘转角及传动比的变化关系;为了改善汽车的动态转向特性及其在高速直线行驶时的抗干扰能力,以车速为输入变量,参考车辆系统稳态增益的变化范围,构建了可变传动比计算模型.MATLAB/Simulink仿真结果表明:通过该模型计算得到的转向系统角传动比能够随着汽车行驶工况灵活变化,主动调整前轮转角,提高了汽车的操纵轻便性和行驶安全性.  相似文献   

3.
文章以三轮全转向叉车转向系统的转向性能为研究对象,以线控转向系统整车二自由度模型为基础,结合叉车自身特点与转向要求,提出了前后轮等角反向转动控制、横摆角速度反馈控制2种控制策略。根据TFC20全向前移式电动叉车的实际数据,给出了基于车速、车轮转角的三轮全转向叉车转向系统性能的仿真对比分析。仿真结果表明,前后轮等角反向转动控制有效改善了传统三轮叉车机动性能,提高了叉车操纵灵活性;横摆角速度反馈控制有效改善了传统三轮叉车的横向稳定性,提高了叉车操纵稳定性。  相似文献   

4.
为设计线控转向汽车的理想转向传动比,以提高汽车转向时的操纵稳定性,基于Car Sim实车模型进行车辆特性化仿真分析,推导了实际横摆角速度增益的计算公式,以此为基础对线控转向系统的变角传动比特性进行分段研究。中低速段采用定增益法,将遗传算法与汽车操纵稳定性评价指标相结合,优化从方向盘转角到汽车响应的固定横摆角速度增益,以作为中低速段理想传动比的设计依据;中高速段提出将横摆角速度增益与侧向加速度增益按可变权重共同控制的方法设计理想转向传动比。通过Car Sim/Simulink联合仿真,选取双移线实验工况、角阶跃实验工况及稳态加速回转实验工况对控制方法进行验证。实验结果表明,基于所提出的实际横摆角速度增益,采用横摆角速度增益与侧向加速度增益相结合的方法分段设计理想传动比,能够减轻驾驶员的转向驾驶负担,提高汽车转向时的操纵稳定性。  相似文献   

5.
杨胜培  周海军 《太原科技》2014,(5):61-63,66
针对汽车线控转向车辆,以四轮转向车辆模型为基础,将四轮转向车辆的横摆角速度和质心侧偏角作为参照控制目标,研究了线控转向车辆转向传动比在车速以及转向盘转角发生变化时,随车辆转向特性变化而进行优化设置的问题。仿真结果表明,基于参考模型横摆角速度反馈控制方案设置的变传动比控制整体性能最好。  相似文献   

6.
对电动汽车的线控转向系统结构和基于两自由度的车辆动力学模型对线控转向稳态增益不变的理想转向传动比进行了设计;同时,利用MATLAB/Simulink建立线控转向系统数学模型和主动转向控制策略。在主动转向控制中,通过理想转向传动比和模糊滑模变结构动态稳定性主动控制算法,控制补偿轮边转向电机的转角。通过正弦输入的仿真试验表明,以理想转向传动比为基础,设计的此算法能满足车辆前轮转角实时补偿的需求,进而可有效提高了汽车的行驶稳定性。  相似文献   

7.
为了改善车辆转向轻便性和方向盘的回正能力,开展了利用左右车轮的转矩差实现差动助力转向和回正控制研究。首先利用转向系统模型预测方向盘力矩,根据助力特性曲线计算不同车速下的理想助力矩,由两者获得理想的方向盘力矩。以实测方向盘力矩与理想方向盘力矩的偏差作为控制目标,进而得到差动助力矩。以实现差动助力矩为目标,以横向稳定性为优化目标,基于二次规划方法对车轮驱动转矩进行最优分配,实现差动助力转向控制。最后根据方向盘转角特性,提出了差动助力转向与回正控制的结合方法。基于CarSim和MATLAB的联合仿真,证明提出的控制方法能改善车辆的转向轻便性和方向盘回正能力。  相似文献   

8.
文章以叉车二自由度线性模型为基础,结合叉车自身特点与转向要求,采用横摆角速度反馈控制策略对三轮全转向叉车进行控制研究。系统仿真输入为方向盘转角,系统输出为横摆角速度和质心侧偏角,通过横摆角速度反馈形成闭环控制,从而调节3个车轮输入转角。仿真结果表明,基于横摆角速度反馈的控制策略有效改善了三轮叉车的机动性能,提高了叉车操纵稳定性。  相似文献   

9.
研究了线控转向系统的转向轮转角跟踪控制.控制算法的设计建立在对轮胎回正力矩的非线性特性以及系统参数不确定性进行分析的基础上,并考虑了执行器力矩受限的情况.基于一种条件积分方法,设计前馈加抗积分饱和的状态反馈控制算法来获得期望的转向轮转角.根据非线性控制理论,通过建立李雅普诺夫函数,证明线控转向控制系统的渐进稳定.最后,通过实车试验证明控制算法能够有效实现转向轮转角的精确跟踪控制.  相似文献   

10.
目前对三轮全转向叉车的研究一般集中在研究车辆模型,但缺乏考虑转向规律是否符合阿克曼转向定理,也缺乏对各类工况下的叉车转向分析,尤其是负载情况下的叉车转向分析。文章以车辆的二自由度线性模型为基础进行展开研究。整车系统仿真的输入为方向盘转角,模糊控制器以质心侧偏角等于0为控制目标来控制后轮转角,同时用阿克曼转向定理来调整左前轮和右前轮转角,由此实现三轮全转向。最后通过对各种转向工况下的仿真,验证了模糊控制转向策略的有效性。  相似文献   

11.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

12.
根据汽车电动助力转向系统工作原理和助力特性特点,提出以竞品车的方向盘输入力矩、车速与助力的实验数据为设计目标,采用线性插值和双线性插值法获取任意车速和方向盘输入力矩下的助力值。通过计算结果和设计目标对比,可知得出该助力特性设计方法合理,简单又易实现。  相似文献   

13.
路径跟踪是智能无人车辆的关键技术之一,其中,对线控转向系统的精确控制是影响智能无人车辆路径跟踪精度的重要因素.为提升线控转向系统在未知扰动下的转角动态响应性能和路径跟踪精度,本文基于一种新型趋近律设计了改进滑模控制方法并应用于线控转向系统.首先,考虑模型不确定、系统摩擦和齿条力建立线控转向系统数学模型.然后,分析得到滑模趋近律的设计原理,通过设计参数调节函数构建了一种新型滑模趋近律实现趋近速度的动态调节,并对比分析了其在离散形式下的性能.最后,针对线控转向系统,设计改进滑模控制方法.仿真和试验结果表明,改进滑模控制方法能够改善线控转向系统对转角的动态响应性能,提高路径跟踪精度.  相似文献   

14.
针对汽车线控转向系统在转向盘和转向轮之间不存在机械连接的问题,进行适当的转向控制,使转向轮转角与转向盘转角的关系根据行驶状况实时调整.分析了线控转向系统转向控制的实现结构、工作原理和控制目标.从车辆动力学与控制的角度归纳分析了转向控制的内容,包括转向传动比算法、车辆稳定性控制、四轮转向控制、路径跟踪控制和转向电动机控制算法等方面,分析了经典控制方法、鲁棒控制方法、滑模控制方法、智能控制和分数阶PID控制等多种控制方法.分析了线控转向系统转向控制的试验技术,指出了转向控制研究的应用前景和发展趋势.结果表明:线控转向系统进行适当的转向控制能提高汽车操纵稳定性.  相似文献   

15.
针对传统的转鼓平台无法测量智能汽车轮胎转角,且不能用于智能汽车变道场景测试等问题,提出以伺服电机系统为控制对象的转向随动系统,研究基于距离传感器的控制策略对于转角跟随的影响。首先,将被测智能汽车置于转向随动系统的转向台上,轮胎转向带动转向台转动,实现被测智能汽车的转向角采集;其次,在左右转向台上分别安装一对激光传感器,采集转角差作为控制系统的误差输入;然后,将输入的转角差、转角差变化率与单片机控制位置脉冲的比例积分控制参数(PI)建立两输入、两输出的模糊控制关系,以提高转向随动系统定位的准确性和稳定性;最后,根据传感器采集的数据和仿真试验数据调整参数,实现模糊控制器的优化控制。试验时,被测智能汽车的车载电脑控制方向盘以不同角速度转动,车辆控制器局域网络(CAN)总线与测试台上位机程序分别记录方向盘转角和转向随动系统转角。研究结果表明:当被测智能汽车方向盘以不同角速度进行测试时,台架的测试结果能够保持在固定区间且没有明显变化,能为智能汽车的转向性能测试提供可靠参数支持;转向随动系统的延时与被测智能汽车方向盘转角速度没有显著关系,转向随动系统的延时约为235.5 ms。  相似文献   

16.
线控转向系统将电液比例、计算机、自动控制等高新技术充分结合,取消装载机原有转向系统中方向盘与转向轮之间机械(或液压)的联系,使装载机的转向灵敏度可以根据工况进行调节、为驾驶员提供合适的路感,解决了装载机作业效率与高速行走稳定性之间的矛盾,从而提高作业效率,降低操作人员的劳动强度,简化装配过程,同时使装载机的遥控驾驶成为可能.设计了装载机线控转向系统的液压系统、电控系统的软硬件,并在样车上进行了试验,结果表明装载机在安装线控转向系统后可以满足实际使用要求.  相似文献   

17.
针对叉车设计过程重复性劳动量大、开发周期长和成本高的缺点,文章基于ADAMS软件对叉车转向系统进行参数化建模,并对转向特性参数和相关运动关系及约束进行阐述和设定。利用ADAMS软件提供的优化计算,对该转向机构进行优化设计,优化后的平均累计转角误差比优化前降低了0.41°,表明转向机构的优化设计有效,提高了叉车转向系统的性能。  相似文献   

18.
提出了一种具有变传动比功能的电动助力转向(EPS)系统,并建立EPS系统变传动比数学模型.采用固定转向增益的控制策略,鉴于特征车速对稳定性的影响,以及转向盘转角对操纵性的要求,提出变动比控制规律的2种方案:方案1是由固定横摆角速度增益和侧向加速度增益得到的变传动比控制规律进行分段线性叠加得到的控制规律;方案2是在方案1...  相似文献   

19.
在汽车操纵动力学研究现状的基础上,建立了线性汽车二自由度模型.在汽车以不同车速行驶时,通过方向盘角阶跃输入,运用径向基函数网络建立了汽车横摆角速度与方向盘转角之间的映射关系.方向盘角阶跃输入的识别结果表明,当汽车以不同车速行驶时,这种识别汽车方向盘转角的方法是可行的,并且具有识别精度高、运算速度快等优点.  相似文献   

20.
对带有线控制动系统(brake by wire,BBW)的车辆进行研究,提出了一种横摆稳定性优化控制策略.以二自由度单轨车辆模型为参考模型,利用比例-积分(proportionalintegral,PI)控制算法求出附加横摆力矩.由所计算出的车辆附加横摆力矩、方向盘转角来识别驾驶员转向意图和车辆实际行驶特性,通过广义逆法和数学归划法相结合的方法将附加横摆力矩分配到作用车轮上,由线控制动系统采用主缸定频调压法对各轮缸的目标液压力进行跟踪控制.硬件在环试验结果表明,该控制策略能够有效地保证车辆在高附和低附路面工况下的横摆稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号