共查询到20条相似文献,搜索用时 15 毫秒
1.
文中提出了基于坐标旋转角的均值粒子群算法,其原理是:在每次迭代中,粒子的下一个飞行位置的方向与当前最好位置的方向之间偏角较大时,则粒子的位置和速度更新中加入一个角度来改变位置和速度的方向,同时角度也更新。通过典型函数优化实验表明,本文算法具有较高的计算精度和较快的收敛速度。 相似文献
2.
粒子群优化算法及其在水库优化调度中的应用 总被引:2,自引:0,他引:2
提出了基于粒子群优化算法求解梯级单目标优化调度问题的一般算法结构,该算法通过计算时段库水位的变化范围,把梯级优化调度问题转化为无约束的优化问题处理,使得算法具有稳定、高效的收敛性能.通过对三峡梯级发电优化调度问题的计算,表明该算法是求解梯级优化调度问题的一种有效的手段. 相似文献
3.
在运用粒子群优化算法求解水电站中长期优化调度问题时,针对粒子群优化算法存在的问题,采用了一种新的改进算法[1],该算法不仅增强了粒子群的全局搜索能力,同时有效避免了算法“早熟”,为水电站中长期优化调度提供了一种有效的解决方法. 相似文献
4.
以矿井通风网络的总功率最小为目标建立了矿井通风网络的非线性优化数学模型.针对模型中风量平衡和风压平衡的约束条件,采用外点罚函数法将其转化模型目标中的惩罚项.面向约束转化后模型,采用文化粒子群优化算法实现寻优.该算法在种群空间采用粒子群优化算法实现粒子进化;通过构建上层信度空间来挖掘进化过程中优势粒子的隐含信息,并以知识形式加以保存;最终通过影响函数,使知识作用于种群空间实现对粒子进化的引导.面向一个典型通风网络结构与其他智能优化方法优化结果比较可知,基于该算法获得的调风方案具有较小的总能耗,且能满足通风网络的需风量需求. 相似文献
5.
《河南师范大学学报(自然科学版)》2017,(6):91-99
为了提高粒子群优化算法(Particle swarm optimization,PSO)的优化效率,降低其陷入局部最优的概率,提出了一种融合榜样学习和反向学习的PSO算法(PSO based on combing Example learning and Opposition learning,EOPSO).首先,对粒子群中的非最优粒子采用新颖的榜样学习机制更新,以便提高全局搜索能力,避免算法陷入局部最优;其次,对粒子群中最优粒子采用反向学习混合机制更新,提升该粒子的搜索能力,进一步避免算法陷入局部最优;最后,对粒子群中的最优粒子还采用了自身变异机制更新,有利于搜索前期的全局搜索和后期的快速收敛.在15个不同维度的基准函数上进行了仿真实验,实验结果表明,与最先进的PSO改进算法ELPSO、SRPSO、LFPSO、HCLPSO相比,EOPSO优化性能更好. 相似文献
6.
基于粒子群算法的车间调度与优化 总被引:1,自引:0,他引:1
通过对车间调度问题的描述,针对传统调度算法寻优效率低或全局寻优能力差的弱点,提出了一种基于粒子群算法(PSO)的车间调度问题解决方案.根据车间调度问题的特点,对粒子群的编码及寻优操作进行了研究,确定了更适合车间调度问题的编码和操作方式,并将算法进行编程,应用到了系统的车间调度部分.仿真结果表明,通过设置适当的参数,可以快速地得到很好的排序结果,能够适用于动态的车间调度问题. 相似文献
7.
基于混合粒子群优化算法的机组负荷最优调度 总被引:1,自引:0,他引:1
粒子群优化(too)算法是一种现代启发式算法,提出一种基于混合粒子群优化算法的机组负荷的调度方法,该方法考虑了机组的经济性和安全可靠性.优化了机组的调度运行方式. 相似文献
8.
粒子群优化算法研究进展 总被引:1,自引:0,他引:1
粒子群优化(PSO)算法是一种源于人工生命和演化计算理论的新兴优化技术.其基本思想为:每个粒子被随机的初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解.PSO的优势在于算法简单,对目标函数要求少,易于实现而又功能强大.目前,已受到演化计算领域的学者们的广泛关注,并提出了许多改进的算法.本文阐述基本粒子群的原理,给出了各种改进的算法,并展望了PSO的发展方向. 相似文献
9.
10.
为有效避免粒子群优化算法后期收敛速度慢的问题,提高寻优能力,设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法,建立了水电优化调度数学模型,提出了弹性粒子群优化算法解决水电优化调度问题的实现方法,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于Matlab语言的优化程序.实例仿真结果表明:弹性粒子群优化算法是有效的;相比基本粒子群优化算法和自适应粒子群优化算法,弹性粒子群优化算法求解水电优化调度问题具有更强的全局寻优能力和更快的收敛速度. 相似文献
11.
粒子群算法是一种进化计算技术,成功地运用于广泛的数值优化问题.PSO算法在求解高维复杂函数优化问题时容易陷入局部最优.有鉴于此,提出了一种基于信息熵的粒子优化算法.该算法提高设计了一种兼顾种群选择性压力以及种群多样性的选择策略,从而提高了粒子在运行过程中的多样性.实验表明,该算法有效避免了陷入局部最优,提高了全局最优解的搜索精度. 相似文献
12.
三群协同粒子群优化算法 总被引:6,自引:0,他引:6
针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。 相似文献
13.
基于遗传算法和粒子群优化算法的电力系统无功优化 总被引:1,自引:0,他引:1
从数学的角度分析,电力系统无功优化是一个多变量、多约束、非连续性的混合非线性规划问题,因此,优化过程十分复杂.以减少有功网损为目标函数建立电力系统无功优化计算的数学模型,基于遗传算法和粒子群优化算法,提出一种新颖的混合策略来求解无功优化问题.IEEE 6和IEEE 14节点系统的仿真计算结果表明:与单一的遗传算法或粒子群优化算法相比,该混合策略在优化效果方面具有明显的优势. 相似文献
14.
波动率是Black-Scholes公式中的一个重要参数,期权价格对它的变动非常敏感.本文首先介绍了Black-Scholes期权定价公式,分析了波动率对期权定价的重要性.然后,为了计算粒子位置和速度,本文根据全局最优位置的历史数据及变异操作,提出了一种基于全局最优位置修正的粒子群优化算法.最后,本文在数值实验中运用修正的粒子群优化算法获得了基于期货合约的欧式看涨期权公式中波动率的估计值,并通过实验结果比较表明该算法具有更好的收敛性. 相似文献
15.
基于分散式废水处理网络的超结构,建立了废水处理网络系统最优化的非线性规划模型和混合整数非线性规划模型.它们是具有非凸性的复杂非线性数学规划问题,用现有的方法进行求解不能保证得到全局最优解.因此,提出了应用新型随机型算法——粒子群优化算法求解上述复杂非线性最优化问题.算例问题的求解计算表明,提出的废水处理网络粒子群优化方法具有不要求初始可行点以及适应全局优化等优点,能够快速有效地解决废水处理网络最优化问题. 相似文献
16.
张世勇 《重庆工商大学学报(自然科学版)》2007,24(3):241-245
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。 相似文献
17.
基于混沌理论提出了混沌粒子群算法C-PSO(chaotic particle swarm optimization),C-PSO算法针对Ad Hoc网络提取的优化指标进行优化处理,在网络优化过程中,C-PSO算法充分利用了混沌系统的随机性、遍历性、敏感性等特性,避免了PSO算法“早熟”现象的出现,避免了陷入局部最优区,增强了全局收索能力。基于网络模拟器NS-3仿真系统对C-PSO算法和PSO算法进行了仿真实验测试,通过对丢包率、网络生命周期和网络吞吐率3个网络性能指标的对比分析和评估,结果表明C-PSO算法优于PSO算法,从而验证了C-PSO算法对Ad Hoc网络优化的有效性与可靠性。实现了对Ad Hoc网络优化。 相似文献
18.
列车优化调度是一个大规模、复杂的、具有非线性离散变量和多约束的多目标数学优化问题.在优化过程中,考虑了特快旅客列车中途离开时间和整个运行时间等因素.首次将粒子群优化(particle swarmoptimization,PSO)技术引入列车优化调度,克服了传统优化方法易陷入局部最优和维数灾难等弊端.通过一个工程实例验证了该算法的可行性和有效性.同时,与现存的列车优化调度方法相比,粒子群优化方法的搜索时间短而且优化结果更接近最优解. 相似文献
19.
针对非线性函数优化问题,提出一种新型的模糊粒子群算法.该算法基于模糊控制器中输入输出的模糊化处理和粒子群寻优的特点.算法在Matlab 2008环境下编程实现,针对几个典型复杂的非线性函数进行优化测试.实现结果表明:模糊粒子群算法是一种简单有效的算法,具有良好的有效性和鲁棒性. 相似文献
20.
基于模糊聚类的粒子群优化算法 总被引:3,自引:0,他引:3
粒子群优化算法(PSO)的基础上,提出了基于模糊C-均值聚类(FCM)算法的粒子群优化算法.该算法在每次迭代过程中首先通过FCM算法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和子群中的最优粒子更新自己的速度和位置值.通过典型复杂函数测试表明,基于模糊C-均值(FCM)的粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法. 相似文献