首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用传统陶瓷制备工艺制备出Ba0.6Sr0.4TiO3(BST)粉体,在600~1 140℃范围内对粉体按不同温度煅烧,用X射线衍射分析各煅烧温度下制备出粉体的物相结构,用TG/DTA研究了粉体在煅烧过程中的晶化过程.实验结果表明:粉体在600~900℃煅烧过程中出现3个不同的中间相,900℃附近这些中间相基本消失,BST钙钛矿相开始形成,经过1 000℃煅烧2.5 h,BST粉体已经显示为完全的钙钛矿相,其晶格常数a和c分别为0.397 4 nm和0.398 4 nm,晶胞体积为0.062 9 nm3.随着煅烧温度的升高,粉体的晶格常数和晶胞体积逐渐减小.  相似文献   

2.
甘氨酸-硝酸盐法合成纳米YSZ微粉及其性能   总被引:4,自引:0,他引:4  
用甘氨酸-硝酸盐法合成了纳米级钇稳定化氧化锆(YS Z)微粉. 用粉末X射线衍射方法对合成产物和煅烧粉体进行物相分析, 并计算了YSZ合成粉 体的平均晶粒尺寸. 用热膨胀仪和交流阻抗谱分别研究了合成原粉的烧结收缩率和烧结样品 的电学性能. 研究结果表明, 当金属离子与甘氨酸的摩尔比为1∶2时, 用甘氨酸-硝酸盐 法可直接合成纳米级YSZ微粉, 600 ℃和1 000 ℃煅烧粉体的平均晶粒尺寸分别为9.8 5和40.5 nm. 经1 000 ℃预烧的YSZ样品的烧结性能明显高于1 200 ℃预烧YSZ样品. YSZ样 品在1 400 ℃烧结6 h的相对密度分别为99.3%和98.6%, 烧结温度范围为1 400~1 450 ℃ . 经1 450 ℃烧结后的样品在850 ℃时电导率分别为0.037和0.021 S/cm.  相似文献   

3.
采用凝胶-浇注法合成钙钛矿复合系的阳极材料LaxSr1-1.5xTiO3(x=0.1~0.4),探究La掺杂量对相组成、烧结性能、力学性能及高温电导率等的影响.LaxSr1-1.5xTiO3粉体在1 100℃下预烧可得到典型的钙钛矿结构.在1 400℃下煅烧得到的烧结体的电导率数据显示:当x=0.3时电导率最高,在测试温度为800℃时高达180 S.cm-1,与传统固相法相比,其烧结温度降低了约200℃.  相似文献   

4.
采用柠檬酸盐法合成了La06Sr0.4Co0.2Fe08O3-δ(LSCF6428)粉体材料.经XRD分析凝胶在1 100℃煅烧时,转变为正交钙钛矿结构的纯相产物,与固相反应法采用1 250℃的烧结温度相比,柠檬酸盐法能有效降低粉体的烧结温度.实验结果表明,在500~700℃中温范围内,LSCF6428样品在空气气氛中的电导率均超过了100S·cm-1,且随温度的升高,样品的电导率在500℃附近出现极值,达到100S·cm-1.其导电机理可以用p型小极化子绝热空隙理论来解释.  相似文献   

5.
用甘氨酸法制备了堆积密度小于0.35%的疏松(Y2O3)0.08(ZrO2)0.02(YSZ)陶瓷粉体.研究了预烧温度对初级粉体的晶体结构、晶粒大小、比表面积、粉体形貌和烧结性能的影响,进一步研究预烧温度对YSZ烧结体电导率的影响.随着预烧温度的升高,粉体的晶粒尺寸增加,比表面积减小,烧结体的相对密度减小,粉体的多孔疏松程度降低.700℃预烧粉体的生坯最易致密化,得到的YSZ烧结样品具有最高电导率,其值在800℃时为0.029S·cm^-1.同时以700℃预烧的粉体为原材料,用共压共烧工艺,制备阳极支撑的厚度为10-20μm的YSZ电解质薄膜.以YSZ薄膜为基础的单电池在700℃下的最大功率密度达到470mW/cm^2.  相似文献   

6.
将超重力法制备的纳米钛酸钡粉体在不同温度(700~900℃ )下煅烧,以提高粉体的结晶度,粉体的粒径从40nm增大到80nm。煅烧后的粉体经过干压成型后,在1100℃下保温2h烧结得到的钛酸钡最高室温介电常数为2880,相对密度为90%,晶粒尺寸达到0.70 μm左右。讨论了煅烧温度对粉体的烧结性能、陶瓷的介电性能及微观结构的影响。  相似文献   

7.
采用放电等离子烧结技术制备Ti-15Nb-25Zr-2Fe钛合金,研究了烧结温度(800,1 000和1 200 ℃)对合金致密度、相组成、显微组织及力学性能的影响。结果表明:合金的致密度随烧结温度的升高逐渐升高。800 ℃烧结的样品主要由β相、α"相、α相和单质Zr组成。1 000 ℃和1200 ℃烧结的样品主要由β相和α"相组成,α"相含量随烧结温度的升高逐渐降低。三种温度烧结的样品中均观察到未固溶的Nb,其含量随烧结温度的升高逐渐降低。随着烧结温度的升高,合金的抗压强度逐渐升高,塑性先升高后降低。  相似文献   

8.
采用低温固相法制备BiFeO_3前驱体,经煅烧得到BiFeO_3粉体,并在不同温度下烧结制得BiFeO_3陶瓷。分析前驱体的热分解过程、粉体和陶瓷的物相组成及陶瓷的磁性能和介电性能。结果表明,采用低温固相法制备的BiFeO_3前驱体,经700℃煅烧可制得基本为单相的BiFeO_3粉体,再经800℃烧结可以制得体积密度较大的BiFeO_3陶瓷,其在室温下不表现宏观磁性;BiFeO_3陶瓷的介电常数和介电损耗均随其烧结温度的升高而下降。  相似文献   

9.
采用溶胶-凝胶法制备CaCu3Ti4O12(CCTO)陶瓷粉体,研究煅烧后CCTO前驱体晶相对烧结成型后的陶瓷介电性能的影响.通过控制煅烧温度(450℃,500℃,550℃,600℃)来控制粉体物相,最后用1 050℃进行烧结.结果表明,在低温下煅烧的粉体经过高温烧结也可以得到纯CCTO晶相.在未形成CCTO晶相下烧结...  相似文献   

10.
分别以α-Al_2O_3,(α+θ)-Al_2O_3和γ-Al OOH为铝源,采用固相法合成了Mg稳定的β"-Al_2O_3粉体,通过比较各产物中β"相的含量,确定了最佳铝源。以最佳铝源制备的β"-Al_2O_3粉体为原料,进一步通过热压烧结工艺制备了固体电解质陶瓷片,研究了烧结温度对烧结体中的β"相含量、断面形貌、相对致密度以及离子电导率等的影响。借助XRD,TG-DSC,FESEM和EIS对样品进行了测试表征。结果表明:以γ-Al OOH为铝源所制备粉体产物的纯度最高(β"相含量高达99.8%),且能在较宽的温度范围内保持稳定(1 115~1 600℃),而热压烧结温度同时影响陶瓷片中β"相的含量和相对致密度。当烧结压力为30 MPa,烧结温度为1 450℃时,陶瓷片中β"-Al_2O_3的含量高达95%,此时的陶瓷片结构致密、均匀,室温离子电导率约为3.8×10~(-4)S·cm~(-1)。  相似文献   

11.
用固相反应法在不同烧结温度下制备了Bi0.7Ba0.3FeO3陶瓷样品,研究了烧结温度对Bi0.7Ba0.3FeO3陶瓷结构、介电和铁电特性的影响.运用XRD进行物相分析可知,Bi0.7Ba0.3FeO3陶瓷样品为正交结构,主衍射峰与纯相BiFeO3一致,烧结温度在870℃以上时样品有良好的结晶度,电阻率达到108Ω?数量级.在一定的温度区间内,介电常数随烧结温度的升高而增大.在低频区830℃烧结的样品的介电损耗比较大,而对应于870℃和900℃两个烧结温度的样品介电损耗有了明显的减小;在高频区介电损耗对烧结温度的依赖性不大.样品的交流电导率随烧结温度的升高而增大.在900℃烧结的Bi0.7Ba0.3FeO3样品的Pr值可达到113.11μc/cm2,远大于纯相BiFeO3.通过Ba2+的A位掺杂进一步提高了纯相BiFeO3的介电、铁电性能.  相似文献   

12.
用溶胶凝胶法制备了BiFeO3前驱体,经不同温度(500~800℃)、不同气氛(O2和N2)煅烧得到了BiFeO3粉体,并在O2或N2气氛条件下烧结制备了BiFeO3陶瓷。用X射线衍射对比研究了不同气氛条件下BiFeO3陶瓷的物相组成。结果显示,在O2或N2中700℃煅烧的BiFeO3粉体在N2中800℃烧结可以得到纯相的BiFeO3陶瓷。实验表明BiFeO3粉体的煅烧温度及烧结过程中采用的气氛对BiFeO3陶瓷的物相组成有重要影响。  相似文献   

13.
将牛骨在650℃热处理,制备成羟基磷灰石粉体,模压成型后分别在不同温度下烧结得到生物陶瓷材料;采用XRD、SEM和万能力学试验机测试试样物相、微观结构和力学性能;1 200℃以下烧结,HA为唯一主相,1 200℃以上烧结时,HA相分解,有TCP析出;随烧结温度提高,抗弯强度和弹性模量分别由1 000℃的16 MPa和9.61 GPa增至1 400℃的62 MPa和70.1 GPa;抗弯强度和人工合成HA陶瓷相当,弹性模量相对较低,更接近于天然骨。  相似文献   

14.
高能球磨法制备Mg_4Nb_2O_9微波介质陶瓷及其表征   总被引:1,自引:0,他引:1  
采用高能球磨法制备粉体.粉体球磨60 h后在900℃保温3 h预烧合成Mg4Nb2O9纯相,研究了由高能球磨所得粉体制备的Mg4Nb2O9陶瓷的相结构、显微组织和微波介电性能随烧结温度的变化关系.X射线衍射检测Mg4Nb2O9陶瓷在1 150~1 200℃烧结过程中有微量的MgNb2O6和Mg5Nb4O15杂相产生,烧结温度高于1 200℃时,样品为Mg4Nb20g纯相;样品收缩率和密度随烧结温度的增大而增加,在1 200℃趋于饱和,分别为13.6和4.22 g/cm3(相对密度96.42%);样品的气孔含量随烧结温度增大降低,晶粒尺寸随烧结温度增大而增大,介电常数和品质因数随烧结温度的增大而增加;1 200℃烧结的样品具有高的致密度、清晰的显微组织,平均晶粒尺寸为3.5 μm,微波介电性能εr=12.6,Q·f=133164 GHz,τ=-56.69×10-6/℃.实验结果表明.高能球磨有效促进球磨后粉体在900℃低温合成Mg4Nb2O9纯相;并降低Mg4Nb2O9陶瓷的烧结温度到1 200℃,改善了陶瓷的谐振频率温度系数,有望成为新一代中温烧结微波介质材料.  相似文献   

15.
热处理过程对纳米钛酸钡相变的影响研究   总被引:1,自引:0,他引:1  
文中采用超重力反应沉淀法制备35nm的钛酸钡粉体, 并在不同温度下对粉体进行热处理, 研究了热处理过程对粉体立方→四方相变的影响。实验结果表明: 当热处理温度高于900℃时, 钛酸钡晶体结构由立方相转变为四方相, 同时粉体的粒径和四方率迅速增大, 在1 000℃时, 分别达到0.15μm和1.009;热处理过程中钛酸钡相变过程取决于粉体的粒径而与存在于晶粒中的OH-缺陷无关; 借助于空位缺陷理论和扩散传质模型, 解释了高温热处理过程(>900℃)钛酸钡粒径迅速长大的原因。  相似文献   

16.
掺8mol%Y2O3的纳米ZrO2粉体中加入0-5wt%纳米Al2O3,在1100℃、1200℃、1300℃不同温度下烧结2h,烧结样品在烧结温度达1200℃以上,掺1wt%以上的纳米Al2O3的四方相完全转变为立方相。初步探讨掺纳米Al2O3的8YSZ陶瓷烧结体相变机理及纳米Al2O3对8YSZ烧结体的晶参数和电导率影响。  相似文献   

17.
采用尿素-硝酸盐燃烧法,在较低温度下制备较高纯度无杂质相的碱土掺杂磷灰石型La_(9.33)M_x(SiO_4)_6O_(2+δ)电解质.通过XRD、SEM、交流阻抗测试,对样品的结构、形貌及电导性能进行研究.结果表明,燃烧合成的无定形电解质粉体,在800℃煅烧12h后,具有P63/m磷灰石型晶体结构;掺杂对LSO烧结体微观产生一定的影响,烧结体的结构和形貌随x值的变化而变化.此外,LSO烧结体具有良好的电阻可逆性和稳定性.适量的掺杂可有效提高LSO的离子电导率,过量的掺杂反而会降低离子电导率,最佳掺杂摩尔分数为0.2.而随着碱土金属阳离子半径增大,掺杂效果也越来越好.  相似文献   

18.
采用水热法合成了BaCe0.85 Y0.15O3-α陶瓷样品的粉体,在较低温度(1550℃)下烧结得到了致密陶瓷样品,烧结温度比通常的高温固相法的烧结温度(1650℃)降低了100℃.对产物形成过程及微结构进行了DSC-TGA、SEM及XRD等表征.结果表明,约在1029℃时样品已基本形成单相钙钛矿结构.采用交流阻抗谱、氢浓差电池及氢的电化学透过(氢泵)等方法测试了样品300℃~600℃的质子导电性.结果表明,样品在300℃~600℃下氢气气氛中几乎为纯质子导体,在600℃时的质子电导率为1.18×10-2S·cm-1.  相似文献   

19.
以硝酸盐和蔗糖为原料,利用低温燃烧合成制备纳米镁铝尖晶石(MgAl_2O_4)粉体,研究了不同煅烧温度、气氛以及加热速率等因素对纳米MgAl_2O_4粉体特性的影响.结果表明:随着前驱体煅烧温度的升高,纳米MgAl_2O_4晶粒尺寸逐渐增大;在O2环境中煅烧前驱体可以降低纯MgAl_2O_4相的形成温度,促进反应物质扩散、增大晶粒尺寸.在快速升温、蔗糖与硝酸盐物质的量比为2∶1以及通入O2的条件下,在400℃下煅烧生成MgAl_2O_4相,700℃时得到单相MgAl_2O_4纳米粉体.低温燃烧合成制备纳米MgAl_2O_4粉体结晶度高、晶粒尺寸细小,呈松散的软团聚态,有利于降低MgAl_2O_4陶瓷致密化烧结温度.  相似文献   

20.
采用溶胶凝胶方法制备Sm掺杂CeO2粉体材料,用放电等离子烧结(SPS)方法和常规烧结方法(CS)进行压片烧制,比较两种烧结方法对材料结构与性能的影响.通过X-射线衍射(XRD)、场发射扫描电镜(FE-SEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明,两种烧结方法所得样品均呈现单一的立方莹石结构;SPS烧结样品的晶粒尺寸和密度大于CS烧结样品,SPS烧结样品的晶粒电导率、晶界电导率及总电导率均高于CS烧结样品;550℃时SPS和CS烧结样品的总电导率分别为2.27 s/m和1.87 s/m.放电等离子烧结法是在较低温度下实现快速烧结,制备致密化固体电解质材料的一种有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号