首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对基坑开挖引起的坑底土体和桩基础的回弹变形问题,基于Mindlin解和自重应力抵消法,给出了大面积基坑坑底中心区域的开挖回弹影响深度和回弹变形的计算方法。通过算例计算,对比了基于Mindlin解和基于Boussinesq解的竖向开挖卸载应力、回弹应力分布的区别,指出基于Mindlin解的解答更适用于基坑开挖的情况。研究结果表明:基坑坑底的竖向开挖卸载应力、回弹应力以及回弹影响深度与基坑开挖宽深比、长深比和泊松比正相关;可采用基于Mindlin解的回弹应力的线性分布拟合公式直接计算坑底回弹变形。经上海地区的3个大规模基坑工程实例,验证了本文方法的适用范围和计算精度。  相似文献   

2.
为利用城市有限的土地资源,在密集的地铁邻近区域进行新建工程施工不可避免。以深圳市桂庙路改造工程为背景,考虑基坑开挖扰动导致抵抗下卧盾构隧道隆起的土体地基参数沿隧道纵向不均匀分布,将盾构隧道简化为Vlazov地基中的Timoshenko梁,对作用在下卧盾构隧道上的基坑开挖卸荷作用采用Mindlin解计算,建立基坑开挖引起既有下卧盾构隧道隆起变形量的理论计算模型,并与既有研究成果和现场实测结果进行对比验证;基于建立的模型对深圳市桂庙路新建基坑施工参数进行优化设计。研究结果表明:所建立的模型能够准确、有效地评估基坑开挖对下卧盾构隧道的影响;建议将原施工方案的3个台阶开挖高度分别调整为4,4和6 m,台阶步长调整为11 m。  相似文献   

3.
临近地铁隧道建造地下通道,需预先评价地下通道开挖对地铁运营安全的影响。结合地下通道工程,针对通道B段垂直正交近距上跨地铁区间隧道等条件,采用Boussinesq解和Mindlin解计算通道开挖卸载产生的附加应力,分层总和法计算地铁隧道产生的回弹位移。结果表明,Boussinesq解和Mindlin解两者计算结果相差不大,Boussinesq解更偏于安全;Boussinesq解和Mindlin解两者计算的地铁隧道底部(轨底)回弹位移均小于1 mm,地铁隧道顶部最大回弹位移分别为6.2 mm、5.3 mm,均满足城市轨道交通线路轨道竖向变形、相对变形曲率、隧道结构绝对沉降量等要求,为地下通道施工的超前控制提供了依据。  相似文献   

4.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

5.
采用两阶段分析法研究地铁隧道开挖引起土体的竖向位移对单桩的影响。第一阶段应用Loganathan和Polous提出的修正解析解估算土体的竖向位移,为简化计算采用五次多项式拟合土体的自由位移;第二阶段基于文克尔地基模式,将土体位移施加于桩上,首先建立被动土体位移作用下单桩竖向位移控制方程,然后分别采用常数变易法和有限差分法求得均质地基和非均质地基由于隧道开挖引起单桩的竖向位移、轴力和桩周摩阻力的理论解。  相似文献   

6.
江杰  张探  欧孝夺  付臣志 《科学技术与工程》2021,21(25):10880-10886
深基坑开挖卸荷会对坑底工程桩的桩身受力和位移特性产生影响,同时在实际工程中,软土在开挖情况下具有较为明显的蠕变效应,但较少有人研究蠕变对坑底工程桩桩土相互作用的影响。采用两阶段分析方法,第一阶段基于H-K三参量模型推导出Mindlin的时域解,提出了一种用于计算基坑开挖卸荷引起的坑底土体竖向附加应力的计算方法,并进一步解得坑底土体竖向位移场的时域解。第二阶段通过建立桩身控制方程,利用有限差分法得到开挖卸荷后考虑坑底土体蠕变变形的单桩非线性分析方法。研究结果表明,得到的时域解能够较好地反映软土基坑开挖条件下考虑土体蠕变变形时坑底单桩的桩身轴力和位移特性发展趋势,为相关工程提供参考。  相似文献   

7.
采用统一土体移动模型三维解计算盾构施工引起的地下管线平面处土体竖向位移,并基于Pasternak地基模型对地下管线受力模型进行简化,建立单线、双线盾构隧道开挖引起的地下管线三维竖向位移计算公式。将计算结果与实测值进行对比;并探讨了管线材质、管线埋深以及土体损失率改变对管线竖向位移的影响。研究结果表明:计算结果与实测值比较吻合,可以计算单线和双线盾构开挖工况;双线隧道开挖引起的管线竖向位移大于单线隧道引起的管线竖向位移;管线材质和管线埋深的改变对管线最大竖向位移的影响较小,管线最大竖向位移随抗弯刚度增大而减小,随埋深增大而增大;土体损失率的改变对管线最大竖向位移的影响较大,土体损失率越大管线最大竖向位移也越大。  相似文献   

8.
以某深基坑项目为例,利用小应变硬化模型对基坑开挖全过程进行模拟计算,结合坑外土体三维应力和隧道位移监测结果,研究基坑开挖对邻近既有隧道变形的影响。结果表明:土体三维应力和隧道变形计算结果与实测数据基本吻合,说明了计算模型的可靠性;基坑开挖引起围护结构向基坑方向最大偏移量为25.8 mm,引起邻近基坑地表最大沉降量为17.7 mm;基坑开挖引起左线隧道向基坑方向最大水平位移约为2.3 mm,向深度方向最大位移约为1.3 mm,与实测值基本吻合,符合规范要求;左线隧道管片最大轴力约为680 kN,最大弯矩约为58 kN·m,隧道砌筑管片能够满足强度要求;基坑外不同位置的隧道在基坑开挖期间均向基坑方向偏移,竖向位移表现为上浮。  相似文献   

9.
为研究基坑明挖卸荷时复合地基中桩侧摩阻力对下卧地铁隧道竖向变形的影响,基于Mindlin应力解,推导得到复合地基中桩的侧摩阻力作用下地铁隧道的总竖向附加应力,利用双面弹性地基梁模型和两阶段分析方法,计算得到地铁隧道总竖向位移,并与前人理论计算结果、实测数据对比验证。最后,分析桩形状、桩截面面积、以及不同区域桩长度、间距的改变对桩侧摩阻力引起地铁隧道竖向位移的影响。结果表明:无论桩参数如何改变,复合地基中桩侧摩阻力对隧道竖向位移的影响范围始终不变,约为1. 1倍基坑纵向长度;材料用量相同的方桩与圆桩相比,方桩可更有效地控制下卧地铁隧道竖向变形;适当地增大隧道斜上方的桩长度,可使其更有效地控制地铁隧道竖向变形;隧道正上方的桩间距存在一个合理的取值范围;适当减少桩纵向间距比减少桩横向间距可更有效地控制下卧地铁隧道竖向变形。  相似文献   

10.
深基坑施工引起的邻近地铁隧道变形是我国城市轨道交通施工安全控制和风险评估中较为关心的一类问题。目前针对该问题的理论研究,大都采用Mindlin解求基坑开挖作用在地铁隧道上的附加应力;然后基于Winkler地基模型求解隧道的变形;该方法没有考虑软土的流变性以及地基变形的连续性。根据弹性理论的经典解答Mindlin公式,同时考虑软土的非线性流变性,推导出基坑对称开挖引起下方隧道附加应力的简化计算公式。采用Pasternak双参数地基模型,建立隧道竖向变形的平衡微分方程,得到两侧深基坑开挖引起下穿地铁隧道竖向变形和内力的实用计算表达式。通过将某市深基坑工程下方的隧道变形监测结果与Pasternak地基和Winkler地基计算结果进行对比,验证了采用Pasternak地基的优越性和提出的理论计算方法的有效性。  相似文献   

11.
采用两阶段方法简便地研究盾构隧道开挖引起的邻近群桩竖向位移。第1阶段,采用Loganathan公式计算盾构隧道开挖引起的桩基轴线处土体竖向位移。第2阶段,首先基于Winkler地基梁模型,将土体位移转化为荷载施加到桩基上;然后,结合叠加法,计算盾构隧道开挖引起的邻近单桩竖向位移;最后,考虑群桩间的土体遮拦效应,再结合叠加法求解出盾构隧道开挖引起的邻近群桩竖向位移。通过与有限元模拟结果进行对比,验证本文所提计算方法的准确性,并进一步分析各物理参量变化对群桩竖向位移的影响。研究结果表明:其余参数不变的情况下,隧道埋深和地层损失比增大均会增强盾构隧道开挖对邻近群桩的影响,导致邻近群桩的竖向位移增大;桩基直径增大导致其抵抗盾构隧道开挖影响的能力增加,进而引起邻近群桩的竖向位移略微减小;土体弹性模量增加导致邻近群桩顶端所受的向下荷载与底端所受的向上荷载均增加,进而引起邻近群桩的顶端竖向位移(最大位移)增大,底端竖向位移减小;桩基与隧道距离增加可减弱盾构隧道开挖对邻近桩基的影响,减小桩基竖向位移;群桩间距增大可引起桩基间的土体遮拦效应减弱,导致桩基的相对竖向位移增大。  相似文献   

12.
通过对沈阳站东站房地下通道工程开挖过程的数值模拟,对基坑开挖过程中地面沉降、支护桩的变形、立柱的内力和下卧地铁区间的变形进行了计算分析.结果表明,托换板可以有效地限制支护桩的水平位移和基底土体的隆起,进而控制地表沉降的产生;基坑开挖过程中所引起的基底土体隆起会使立柱自身的轴力增大,影响内支撑结构体系的稳定;基坑开挖对其下卧地铁区间的水平、竖向位移有明显影响,区间以"水平向压缩、竖向拉伸"的椭圆形形式产生收敛变形.交叉建设的基坑工程对周围环境及建构筑物的影响不容忽略.  相似文献   

13.
为了考虑地基土的分层特性和桩端下卧层计算深度对群桩基础沉降的影响,基于Mindlin竖向应力解用分层总和的思想建立群桩的土体竖向位移柔度矩阵,参照弹性理论法的分析过程,建立了分层土中群桩基础沉降的计算方法.与工程实例对比表明,对于工后沉降量不大的群桩基础,本文方法可以给出较合理的沉降计算值.  相似文献   

14.
基坑开挖导致的土体卸载作用会引起邻近下卧既有隧道隆起变形,甚至会干扰隧道的正常运营.提出了一种基坑开挖引起下卧隧道纵向变形的简化计算方法,将隧道简化成无限长Euler-Bernoulli梁搁置在三参数的Kerr地基模型,提出了剪切层弯矩的计算假设,利用有限差分法并结合隧道两端的边界条件得到隧道纵向变形差分解.结果表明:...  相似文献   

15.
盾构隧道开挖引起既有管线的竖向变形研究   总被引:1,自引:0,他引:1  
建立了基于双参数Pasternak地基模型的管线竖向变形计算方法,第一阶段采用Loganathan和Poulos提出的解析方法计算盾构隧道开挖引起的既有管线轴线位置处的土体自由位移场;第二阶段将既有管线视为Pasternak弹性地基上的无限长梁,将土体自由位移施加于管线,推导并求解了管线的平衡微分方程,得到了管线竖向位移和内力的表达式.进一步推导并求解了考虑侧向土体作用时的管线平衡微分方程,得到了更符合实际的管线变形.基于简化弹性空间法获得的地基参数,将Pasternak地基和Winkler地基的解析计算结果与数值计算结果以及工程实例监测数据进行对比验证,证明了Pasternak地基模型的优越性和本文计算方法的有效性.  相似文献   

16.
基坑开挖挡土墙的有限元模型   总被引:1,自引:0,他引:1  
提出基坑开挖中作为挡土墙的地下连续墙视为支撑在弹性地基上板的模型,假定上压力是位移的函数,挡土墙内侧支撑的作用采用杆单元刚度矩阵表示被动区土体支撑作用,采用Boussinesq解积分建立地震柔度矩阵,挡土墙本身采用厚板理论求出板的刚度矩阵,得到总体平衡方程,解方程及回代,求得挡土墙任意点的位移和各道支撑的轴向力,最后以上海某基坑工程为例进行计算,计算值与实测值较吻合.本模型为基坑开挖围护结构设计提供了一个实用的计算方法.基坑开挖挡土墙的有限元模型@唐孟雄@赵锡宏  相似文献   

17.
基于剪切位移法和Winkler模型采用两阶段分析方法探讨非均质地基中隧道开挖对被动单桩受力特性的影响。首先根据Loganathan修正的解析式估算隧道周边土体的竖向位移并将位移模式作用于桩身,然后建立被动单桩的竖向位移微分方程,采用有限差分法得出隧道开挖引起的单桩沉降与受力的解析解,最后讨论了隧道埋深和直径、桩基与隧道中线水平距离、平均地层损失比、单桩直径和刚度等参数变化对被动单桩受力特性的影响。结果表明,被动单桩的竖向位移、桩身轴力及桩周摩阻力随隧道埋深的增加均呈先增大后减小的趋势;地层损失比及隧道开挖断面尺寸对桩基竖向受力特性的影响很大,而单桩混凝土强度等级对其影响较小;桩径和桩身刚度增加到一定程度后,被动单桩的竖向受力特性趋于稳定。  相似文献   

18.
孙伟  任洋  王永刚 《科学技术与工程》2023,23(10):4339-4347
基于镜像法和Mindlin解,考虑土体损失、刀盘推力、盾壳摩擦力和注浆压力的影响,推导出类矩形盾构隧道施工在既有隧道轴线处产生的附加应力计算公式,将既有隧道简化为由剪切弹簧连接的弹性地基短梁,结合最小势能原理推导出既有隧道竖向位移计算公式。依据工程实例构建数值计算模型,对比本文计算结果和数值模拟结果,验证本文计算方法的适用性。研究结果表明:本文计算方法的结果与数值模拟结果吻合程度高,验证了本文计算方法的正确性;随着类矩形盾构隧道掘进,邻近隧道的纵向位移、环间剪切量和剪切力不断增大,在盾构机通过邻近隧道轴线20 m后趋于稳定;邻近隧道沉降变形最大处的环间剪切量和剪切力最小,沉降变形曲线反弯点处的环间剪切量和剪切力最大。  相似文献   

19.
基坑开挖会对下卧管线产生不利影响,如何控制基坑开挖对下卧管线产生的不利影响是工程界的热点问题.以杭州市沿江大道管廊基坑上跨污水管段工程为背景,利用ABAQUS软件进行数值模拟,建立了三维有限元模型.在此基础上分析了管线周围土体注浆加固的作用,同时研究了改变管线与基坑的夹角引起管线竖向位移的变化规律.分析结果表明:上方基坑的开挖会使下卧管线呈现出"中间大、两边小"的"上凸型"变形模式,对下卧基坑管线周围进行合理的注浆加固,能有效减少管线的整体隆起变形;且下卧管线与基坑长边夹角越大,管线的最大隆起位移越小,当管线与基坑长边垂直时,管线的隆起变形最小.研究结果可为今后类似工程提供借鉴.  相似文献   

20.
结合上海地区某邻近明挖暗埋隧道基坑工程案例,采用数值方法模拟了深基坑开挖的过程,并通过与实测数据进行对比验证了模型的合理性.针对隧道与基坑之间的连接墙进行对比分析,揭示了连接墙所起的作用.通过分析相邻地连墙竖向位移以及其两侧土体位移,得出地连墙与隧道之间以及墙土之间的相互影响规律.根据地连墙墙体轴力分布,研究墙体在开挖过程中的受力形态,揭示临近基坑开挖对地下结构(明挖暗埋隧道)的影响机理.结果表明,对于明挖隧道与基坑共墙的情况,隧道的隆起主要由地连墙以及连接墙的共同影响所致.明挖隧道受到基坑地连墙变形的影响明显大于受周围土体位移的影响.地连墙发生竖向隆起的原因为坑内土体提供的摩擦力大于坑外土体提供的摩擦力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号