首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用真三轴模拟压裂实验系统对玄武岩、巨砾岩、泥灰岩岩心进行了水力压裂裂缝起裂及裂缝扩展模拟实验,得到了压后裂缝几何形态和压裂过程中压力随时间的变化规律.研究结果表明,玄武岩中天然裂缝发育程度较低,抗拉强度较高,裂缝起裂会导致明显的压降,压后能够形成比较理想的双翼缝;巨砾岩中天然裂缝较为发育,裂缝起裂不会导致明显的压降,高排量压裂后形成的裂缝为多组复杂裂缝,裂缝扩展摩阻很大,裂缝延伸压力几乎与破裂压力相当;泥灰岩抗拉强度较低,部分发育有天然裂缝,破裂压力较低,裂缝起裂后延伸压力与最小水平地应力相当.  相似文献   

2.
不同岩性地层水力压裂裂缝扩展规律的模拟实验   总被引:5,自引:0,他引:5  
利用真三轴模拟压裂实验系统对玄武岩、巨砾岩、泥灰岩岩心进行了水力压裂裂缝起裂及裂缝扩展模拟实验,得到了压后裂缝几何形态和压裂过程中压力随时间的变化规律。研究结果表明,玄武岩中天然裂缝发育程度较低,抗拉强度较高,裂缝起裂会导致明显的压降,压后能够形成比较理想的双翼缝;巨砾岩中天然裂缝较为发育,裂缝起裂不会导致明显的压降,高排量压裂后形成的裂缝为多组复杂裂缝,裂缝扩展摩阻很大,裂缝延伸压力几乎与破裂压力相当;泥灰岩抗拉强度较低,部分发育有天然裂缝,破裂压力较低,裂缝起裂后延伸压力与最小水平地应力相当。  相似文献   

3.
依据岩心观测以及岩石力学性质试验发现,陇东地区致密薄互层油藏具有岩性、力学性质变化频次高,变化范围尺度小的特点。结合现场压裂数据,推断薄互层油藏压裂后产能低的主要原因是:压裂过程中,由于弱胶结面的存在,水力裂缝在层间的多次错动,导致水力裂缝缝高扩展受到抑制;压裂结束后,由于地应力作用,层间错动面闭合,有效水力裂缝面积减小。针对该推断,制备薄互层物理模拟试样,进行压裂物理模拟试验。通过物理模拟试验结果发现:层间高弹性模量差异,对于水力裂缝垂向扩展的抑制作用并不明显。在破裂压力后,增加排量仅对增大水力裂缝的体积有促进作用,对水力裂缝穿入其他岩层的作用较小或是没有。  相似文献   

4.
依据岩心观测以及岩石力学性质试验发现,研究地区致密薄互层油藏具有岩性、力学性质变化频次高,变化范围尺度小的特点。结合现场压裂数据,推断薄互层油藏压裂后产能低的主要原因是:压裂过程中,由于弱胶结面的存在,水力裂缝在层间的多次错动,导致水力裂缝缝高扩展受到抑制;压裂结束后,由于地应力作用,层间错动面闭合,有效水力裂缝面积减小。针对该推断,制备薄互层物理模拟试样,进行压裂物理模拟试验。通过物理模拟试验结果发现:层间高弹性模量差异,对于水力裂缝垂向扩展的抑制作用并不明显。在破裂压力后,增加排量仅对增大水力裂缝的体积有促进作用,对水力裂缝穿入其他岩层的作用较小或是没有。  相似文献   

5.
针对油井施工次数的增加,老井原有的人工裂缝生产潜能逐年降低等问题,提出了转向重复压裂技术,并介绍了水溶性SC-JXSG高效暂堵剂。通过室内静、动态实验评价了暂堵及解堵效果,分析了暂堵剂的浓度、注入量和注入压力对暂堵效率的影响。结果表明:1静态评价实验中,质量分数为3%的暂堵剂在30℃时溶解缓慢,80℃时也需数小时才能充分溶解;2裂缝性岩心暂堵动态实验中,在60℃条件下,注入1 PV质量分数为3%的暂堵剂,暂堵率可高达99%,突破压力梯度高达37.90 MPa/m;在80℃条件下,反向注入10 PV地层水解堵,最终解堵率可达73%。该暂堵剂现场试验效果良好,可以满足压裂暂堵现场施工要求。  相似文献   

6.
为了研究高速通道压裂裂缝内的支撑规律及裂缝导流能力,利用FCES-100导流仪对砂岩岩板进行室内导流能力测试。对比通道压裂铺砂与连续铺砂裂缝导游能力的差异,分析了纤维浓度、铺砂方式和支撑剂类型对通道压裂裂缝导流能力的影响。实验结果表明:低闭合压力下,通道压裂裂缝比连续铺砂裂缝导流能力大,随着闭合压力增加,通道压裂裂缝导流能力下降速度更快;纤维缠绕支撑剂形成网状结构,增加支撑剂团的稳定性,压裂液中最佳纤维质量分数为0.5%;支撑剂团的面积变化系数越大,通道压裂裂缝导流能力越低;支撑剂团块总面积大有利于增大通道压裂裂缝承压能力,但总面积过大裂缝导流能力反而会降低;对比通道压裂中3种支撑剂,覆膜砂的效果最好,其次是陶粒,石英砂效果最差。  相似文献   

7.
在水力压裂过程中,天然裂缝尖端附近会发育许多待破裂区,在宏观裂缝形成前产生微裂隙,最终影响水力裂缝的扩展规模。为有效增加裂缝性致密储层的缝网规模,针对待破裂区开展真三轴水力压裂模拟实验,探究待破裂区域的影响机制。选取致密灰岩露头,精细刻画了裂缝性致密储层露头压前压后裂缝形态,分析了天然裂缝形态、待破裂区域以及泵注参数对裂缝性致密储层改造效果的影响,结果表明:待破裂区,即断裂过程区,主要发育在井筒周围;声发射监测结果显示,在注入压力达到破裂压裂前,岩石内部已经发育大量待破区,决定了裂缝的起裂位置和初始扩展路径,压裂过程中排量的突然提高会使待破裂区迅速沟通形成裂缝,随后逐渐扩展。当水力裂缝延伸到层理面后,随排量阶梯式增加,泵压提高,会使层理面附近发育新的待破裂区,进而影响到水力裂缝的转向、分叉或是否穿透天然裂缝。  相似文献   

8.
通过大型真三轴模拟试验,研究了井斜角,井眼方位角、射孔方式对斜井压裂裂缝起裂压力、起裂位置及裂缝延伸规律的影响,得到了不同参数条件下裂缝起裂和延伸的直观认识。探索通过定向射孔形成一条平整大裂缝的途径,从而降低水力压裂地层的破裂压力,改善裂缝形态,提高压裂成功率,为优化斜井地层射孔方案及水力压裂设计提供依据。实验结果对于提高斜井水力压裂技术水平,改善压裂增产效果具有重要作用。  相似文献   

9.
利用大型真三轴压裂模拟试验系统,通过模拟地层条件,监测压裂过程及其压力情况,观察裂缝的起裂及其延伸形态,进行射孔方式对压裂压力及裂缝形态的影响研究。研究结果表明,在地应力的大小和分布确定的情况下,破裂压力随着射孔角度的增大而升高,随着射孔排数的增加而降低。为有效降低地层破裂压力、提高压裂成功率及效果,射孔方位应选择0°方向,射孔密度在套管强度容许的前提下越大越好;单排射孔形成的裂缝形态较为简单,多排射孔形成的裂缝形态较为复杂,裂缝条数增加且形态各异。  相似文献   

10.
螺旋射孔条件下地层破裂压力的数值模拟研究   总被引:4,自引:0,他引:4  
水力压裂技术已经在低渗地层的石油天然气开采中得到广泛的应用,螺旋射孔是该技术中的常用措施,在此条件下地层的破裂压力是影响施工成功率和效果的重要因素之一.采用三维有限元方法对螺旋射孔条件下地层的破裂压力进行了研究,建立了套管完井(考虑水泥环及套管的存在)情况下井筒及地层的三维计算模型,首先计算和分析了定向射孔时不同的射孔密度和射孔方向角对地层的破裂压力的影响,与前人的实验结论进行了比较,在此基础上,进行了螺旋射孔条件下不同射孔方位角、相位角以及射孔密度对地层破裂压力的影响的研究,通过数值模拟的结果,给出了螺旋射孔对地层破裂压力的影响规律,可作为进一步研究螺旋射孔条件下的裂缝扩展规律的基础,同时对压裂设计和实际压裂施工中螺旋射孔参数的选取给出了具体的建议.  相似文献   

11.
基于线弹性岩石力学和定向射孔增产理论,提出了利用定向射孔诱导地层形成复杂体积裂缝的增产设计思路。通过大型真三轴水力压裂物理模拟实验对其压裂机理进行了研究,分析了射孔方位、水平地应力差、射孔深度等对破裂压力以及裂缝扩展形态的影响。结果表明:定向射孔方位角和水平地应力差对破裂压力的影响最为明显;并且控制着裂缝转向半径。随着射孔方位角的增大,破裂压力逐渐升高;随着射孔深度的增加,破裂压力逐渐降低;同时存在一个最佳射孔方位角范围,在此范围内可以诱导地层产生"S"型、"X"型等复杂裂缝形态。研究成果可为定向射孔压裂施工参数优选提供理论支撑。  相似文献   

12.
基于多孔介质流-固耦合的基本方程,建立起砂泥岩储层压裂裂缝扩展的三维有限元模型,利用cohesive黏结单元模拟压裂过程中裂缝起裂、扩展造成的损伤,定量描述裂缝延伸规律。模型计算结果显示,砂泥岩储层裂缝缝宽剖面呈"S"型,泥岩夹层裂缝宽度较砂岩缝宽小20%~35%,施工排量与砂泥岩层应力差对裂缝宽度影响较大,建议砂泥岩储层施工排量范围为3.5~4.0m3/min。在应力差高于4 MPa的砂泥岩储层,考虑夹层厚度的条件下优先实施分层压裂。  相似文献   

13.
针对致密油藏注不进,采不出的开发难题和低产量、低效益的开发现实,基于国外对致密油藏CO2驱的成功案例,提出了CO2干法压裂以及CO2置换相结合的开发思路。模拟干法压裂地层,开展了CO2置换实验,研究了焖井时间、焖井压力、返排压差等因素对CO2置换效率的影响。并借助CT扫描技术,对比实验前后岩心内流体的分布推测置换实验反应情况。实验结果表明:最佳焖井时间为12~24 h;焖井压力大于最小混相压力(20.56 MPa)时焖井后能取得较高置换效率;返排压差在6 MPa以上开发效果最佳。在压裂的致密油藏内,离裂缝距离中等的岩心部位置换效果最好,其次为靠近裂缝的岩心部位,而距裂缝最远的岩心部位置换效果最差。  相似文献   

14.
基于油气层爆燃压裂造缝加载模型,建立地层破裂和止裂压力、爆燃气体渗滤、裂缝延伸长度和宽度以及爆燃气体的质量守恒与能量守恒计算模型,并耦合求解,分析爆燃压裂过程中井筒压力、裂缝几何形态变化。结果表明:火药爆燃后,井筒中的压力、温度迅速上升,达到地层破裂压力时起裂,裂缝开始延伸;在火药爆燃、气体渗滤作用下,爆燃气体的压力先增加后减小,最后降至地层初始压力;在爆燃加载条件相同的情况下,随裂缝条数的增加峰值压力和裂缝长度均减小;裂缝延伸过程中裂缝宽度先增大后减小,裂缝条数越少,裂缝宽度最大值和最终值越大。  相似文献   

15.
压裂液在油页岩水力压裂裂缝扩展过程中扮演着重要的角色,因此获得压裂液对油页岩水力压裂裂缝扩展的影响规律对油页岩水力压裂技术的发展有着巨大的推动作用。文章选取羟丙基胍胶稠化剂配制成了不同含量的压裂液基液,并测量了其粘度。然后,基于XFEM裂缝扩展分析方法和压裂液对油页岩裂缝扩展的影响模型,采用Abaqus数值模拟软件,对吉林省汪清地区的油页岩进行了不同粘度和不同排量压裂液条件下的裂缝扩展仿真模拟。分析模拟结果发现,水力压裂裂缝在油页岩中扩展时,压裂液排量是影响裂缝扩展的主要因素,而压裂液粘度对油页岩裂缝扩展的影响很小;随着压裂液排量的增加,裂缝的长度和宽度迅速增大,其扩展速率亦随排量增加而增大;到水力压裂后期,裂缝长度和宽度逐渐趋于常值,即压裂液对裂缝扩展的影响逐渐变小。  相似文献   

16.
利用动态压力脉冲作用于岩心可模拟研究爆燃压裂裂缝开裂条件.影响岩心冲击开裂裂缝条数的因素包括岩心外径、岩心长度、落物质量、落物高度、冲击能量、平均加压速率、岩心抗拉强度.基于实验数据,运用一级模糊综合评判法研究了不同裂缝条件下这些因素的权重和关联度,建立了冲击开裂裂缝条数预测模型,并通过实验验证了预测模型的准确性,其预测精度达到91.7%.  相似文献   

17.
针对水力压裂条件下煤层气井初始压裂缝转向问题,首先基于断裂力学原理与最大周向应力准则,分析了储层原始地应力场和压裂液渗透场时空演化规律,建立了裂缝转向起始模型,并考虑转向裂缝面复杂的应力边界条件,利用位移不连续法建立了裂缝转向扩展模型;其次着重考虑了射孔角度、地应力差及施工排量对压裂缝转向扩展的影响,结合焦作恩村矿区现场施工参数,分别计算了裂缝起偏角度和偏转距离。计算结果表明:水力压裂条件下,射孔角度与地应力差对近井区压裂缝转向影响较大,而压裂液排量则影响较小;当射孔角度或地应力差较小,压裂缝偏转距 离较大,形成的压裂缝曲率也较小;反之亦然。最后运用XFEM软件模拟裂缝转向扩展机制,经与计算结果对比,发现二者较为吻合,从而验证了理论模型的正确性,研究成果可为定向射孔水力压裂现场控制提供理论指导。  相似文献   

18.
为研究页岩气储层水力压裂后复杂裂缝导流能力,运用FCES-100裂缝导流仪,选取页岩地面露头岩心,加工成符合实验要求尺寸岩心板,将页岩复杂裂缝简化为转向裂缝和分支裂缝两种形式,用陶粒和覆膜砂两种类型支撑剂进行导流能力实验测试。实验结果表明:裂缝形态对导流能力影响较大,裂缝转向后导流能力明显低于单一裂缝,低闭合压力条件下转向裂缝与单一裂缝导流能力相差35%~40%,随闭合应力增大,差距逐渐增大;低闭合压力下陶粒导流能力高于覆膜砂,而当闭合压力增大后覆膜砂的导流能力反超陶粒,低铺砂浓度下反超趋势更加明显;分支裂缝存在时,等量支撑剂多条分支裂缝的等效导流能力小于单一裂缝,高闭合压力下分支裂缝中不同分支铺砂浓度的差异越大,导流能力与单一裂缝越接近。  相似文献   

19.
针对超深储层的破裂压力很高,对压裂施工设备的功率和承载能力要求更高,在施工安全上存在一定隐患的实际,研究了超深储层的破裂压力模型以及利用岩石力学性质的酸敏性,采取酸化预处理降低地层破裂压力,建立了射孔井筒破裂压力预测模型,分析了酸化预处理降低地层破裂压力机理。利用西部某深层气藏岩样室内酸处理前后岩石弹性模量、泊松比和岩石抗压强度变化结果,计算了该气藏酸处理前后的破裂压力,结果表明酸预处理后破裂压力大幅下降,对降低压裂施工压力有重要作用。为在现有工程条件和技术条件下,准确预测破裂压力和施工压力、合理选用施工设备、降低储层改造的工程风险提供了方法。  相似文献   

20.
针对重复压裂施工过程中面临的压裂暂堵剂暂堵能力不足,且暂堵后无法有效解堵的技术难题,以马来酸酐、苯乙烯和丙烯酸丁酯为合成单体,采用过氧化苯甲酰作为引发剂,通过沉淀聚合法研制了一种新型自降解压裂转向材料。红外特征分析结果表明,各单体聚合成一种聚合物分子链。热性能测试结果表明,该材料具有较好的热稳定性,230 ℃质量损失仅为10%,玻璃化转变温度达165 ℃,可在高温条件下保持较好的力学强度。该材料粒径D50值为12.82 μm且粒径呈现多峰分布,具有较好的广谱性暂堵效果。综合性能评价结果表明,其对裂缝暂堵承压效果高于岩心直接压裂破裂压力7 MPa,且在90 ℃条件下自降解时长可达10 h,有效满足了重复压裂时间需求。抗污染测试结果表明,该材料可抗10%氯化钠、10%氯化钙及10%碳酸钠污染,并可通过增加溶液碱性,加快压裂转向材料的自降解速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号